Cellular Design for Laser Freeform Fabrication

Cellular Design for Laser Freeform Fabrication PDF Author: Olaf Rehme
Publisher: Cuvillier Verlag
ISBN: 3736932731
Category : Technology & Engineering
Languages : en
Pages : 303

Get Book Here

Book Description
Cellular materials are spread all across the world. They can be found in nature, e.g. in bone and wood, as well as in engineering applications such as honeycomb sheets and aluminum foams to name but a few. Cellular materials have some unique properties which allow new and innovative applications beyond the scope of solid engineering materials. Especially their low density and therefore their outstanding stiffness-to-weight-ratio is of greatest importance in most applications. Functions of cellular materials could be lightweight structures of high stiffness, damping and absorption of mechanical energy, vibration control, acoustic absorption, heat exchange, filtering and numerous other tasks. Generally, a combination of these tasks in one part exhibits an optimized and therefore innovative overall performance. One recent development in production technologies is the field of Laser Freeform Fabrication (LFF) processes where parts are manufactured by application of thin layers of powder or sometimes liquid material. A laser beam melts and solidifies the material along contour lines and hatch areas according to slices of a corresponding 3D-CAD model. Among these processes the Selective Laser Melting (SLM) technology was advanced based upon the work in this thesis to allow the manufacture of periodic, open-cell lattice structures from engineering materials such as stainless steel, titanium, etc. In contrast to other cellular materials these lattice structures can be of well-defined, nearly arbitrary shape. Due to the layerwise fabrication the SLM process is also capable of creating lattice cores surrounded by solid shells allowing new degrees of geometric freedom in engineering design that was never experienced before in conventional machining. This allows the development of interesting new applications such as medical implants where the main issues are the improvement of osseointegration and realization of physioelastic material properties for an optimized bond between the implant and surrounding tissue. Lattice structures obtained from the SLM process can meet these requirements. This thesis contributes to the understanding of the mechanical properties of the new material class of SLM lattice structures. Their future incorporation in engineering designs requires a profound knowledge of failure mechanisms and operational limits. Therefore, a comprehensive summary is given on the state-of-the-art of cellular materials followed by a dedicated analysis on Laser Freeform Fabrication and an in-depth validation of the Selective Laser Melting capabilities. Readers with advanced knowledge on cellular materials or Laser Freeform Fabrication may skip sections 2 or 3, respectively. Next, all process constraints and boundary conditions for the manufacture of SLM lattice structures are elaborated. Then a bilateral approach was chosen to derive scaling laws and optimize the SLM lattice structures for given tasks. Firstly, a theoretical analysis comprises the examination of structural hypotheses for isotropic cellular materials before a generalized theory is developed for anisotropic SLM lattice structures. Different cubic, polyhedral and rhombic cell types are evaluated towards their producibility. Some of these cell types are preselected and are subject to numerical analysis where their mechanical properties are derived on the basis of the space framework theory. Secondly, an extensive experimental evaluation of test specimens is given. This includes examinations of the properties of SLM solids, the producibility of SLM lattice structures in terms of dimensions and testing of their mechanical properties such as strength and elasticity in compression, tension and shear load. The test procedures are divided in three stages. The first stage comprises the examination of the specific strength in dependence of the cell type to narrow down few optimum cell types for different applications. In the second and third stage these cell types are investigated towards their elasticity and strength in dependence of the cell size. Finally, this thesis concludes with scaling laws provided in accordance with the theoretical and experimental results. Opposed to simple power laws used for cellular materials these newly developed scaling laws consider leaps in properties at higher, so-called critical relative densities which can be obtained from SLM due to its high degree of design freedom. At the critical relative density SLM lattice structures cease being frameworks and become rather solids with pores. For future applications these scaling laws can be applied by design engineers to match particular requirements that can only be fulfilled by Laser Freeform Fabrication and its degrees of freedom in design. For the sake of completeness some sample applications in the field of medical implants are given in this thesis, which involve these scaling laws.

Cellular Design for Laser Freeform Fabrication

Cellular Design for Laser Freeform Fabrication PDF Author: Olaf Rehme
Publisher: Cuvillier Verlag
ISBN: 3736932731
Category : Technology & Engineering
Languages : en
Pages : 303

Get Book Here

Book Description
Cellular materials are spread all across the world. They can be found in nature, e.g. in bone and wood, as well as in engineering applications such as honeycomb sheets and aluminum foams to name but a few. Cellular materials have some unique properties which allow new and innovative applications beyond the scope of solid engineering materials. Especially their low density and therefore their outstanding stiffness-to-weight-ratio is of greatest importance in most applications. Functions of cellular materials could be lightweight structures of high stiffness, damping and absorption of mechanical energy, vibration control, acoustic absorption, heat exchange, filtering and numerous other tasks. Generally, a combination of these tasks in one part exhibits an optimized and therefore innovative overall performance. One recent development in production technologies is the field of Laser Freeform Fabrication (LFF) processes where parts are manufactured by application of thin layers of powder or sometimes liquid material. A laser beam melts and solidifies the material along contour lines and hatch areas according to slices of a corresponding 3D-CAD model. Among these processes the Selective Laser Melting (SLM) technology was advanced based upon the work in this thesis to allow the manufacture of periodic, open-cell lattice structures from engineering materials such as stainless steel, titanium, etc. In contrast to other cellular materials these lattice structures can be of well-defined, nearly arbitrary shape. Due to the layerwise fabrication the SLM process is also capable of creating lattice cores surrounded by solid shells allowing new degrees of geometric freedom in engineering design that was never experienced before in conventional machining. This allows the development of interesting new applications such as medical implants where the main issues are the improvement of osseointegration and realization of physioelastic material properties for an optimized bond between the implant and surrounding tissue. Lattice structures obtained from the SLM process can meet these requirements. This thesis contributes to the understanding of the mechanical properties of the new material class of SLM lattice structures. Their future incorporation in engineering designs requires a profound knowledge of failure mechanisms and operational limits. Therefore, a comprehensive summary is given on the state-of-the-art of cellular materials followed by a dedicated analysis on Laser Freeform Fabrication and an in-depth validation of the Selective Laser Melting capabilities. Readers with advanced knowledge on cellular materials or Laser Freeform Fabrication may skip sections 2 or 3, respectively. Next, all process constraints and boundary conditions for the manufacture of SLM lattice structures are elaborated. Then a bilateral approach was chosen to derive scaling laws and optimize the SLM lattice structures for given tasks. Firstly, a theoretical analysis comprises the examination of structural hypotheses for isotropic cellular materials before a generalized theory is developed for anisotropic SLM lattice structures. Different cubic, polyhedral and rhombic cell types are evaluated towards their producibility. Some of these cell types are preselected and are subject to numerical analysis where their mechanical properties are derived on the basis of the space framework theory. Secondly, an extensive experimental evaluation of test specimens is given. This includes examinations of the properties of SLM solids, the producibility of SLM lattice structures in terms of dimensions and testing of their mechanical properties such as strength and elasticity in compression, tension and shear load. The test procedures are divided in three stages. The first stage comprises the examination of the specific strength in dependence of the cell type to narrow down few optimum cell types for different applications. In the second and third stage these cell types are investigated towards their elasticity and strength in dependence of the cell size. Finally, this thesis concludes with scaling laws provided in accordance with the theoretical and experimental results. Opposed to simple power laws used for cellular materials these newly developed scaling laws consider leaps in properties at higher, so-called critical relative densities which can be obtained from SLM due to its high degree of design freedom. At the critical relative density SLM lattice structures cease being frameworks and become rather solids with pores. For future applications these scaling laws can be applied by design engineers to match particular requirements that can only be fulfilled by Laser Freeform Fabrication and its degrees of freedom in design. For the sake of completeness some sample applications in the field of medical implants are given in this thesis, which involve these scaling laws.

Virtual and Rapid Manufacturing

Virtual and Rapid Manufacturing PDF Author: Ljubomir Tanchev
Publisher: CRC Press
ISBN: 0203931874
Category : Technology & Engineering
Languages : en
Pages : 866

Get Book Here

Book Description
Collection of 120 peer-reviewed papers that were presented at the 3rd International Conference on Advanced Research in Virtual and Rapid Prototyping, held in Leiria, Portugal in September 2007. Essential reading for all those working on V&RP, focused on inducing increased collaboration between industry and academia. In addition to key

Laser Technology in Biomimetics

Laser Technology in Biomimetics PDF Author: Volker Schmidt
Publisher: Springer Science & Business Media
ISBN: 3642413412
Category : Science
Languages : en
Pages : 281

Get Book Here

Book Description
Lasers are progressively more used as versatile tools for fabrication purposes. The wide range of available powers, wavelengths, operation modes, repetition rates etc. facilitate the processing of a large spectrum of materials at exceptional precision and quality. Hence, manifold methods were established in the past and novel methods are continuously under development. Biomimetics, the translation from nature-inspired principles to technical applications, is strongly multidisciplinary. This field offers intrinsically a wide scope of applications for laser based methods regarding structuring and modification of materials. This book is dedicated to laser fabrication methods in biomimetics. It introduces both, a laser technology as well as an application focused approach. The book covers the most important laser lithographic methods and various biomimetics application scenarios ranging from coatings and biotechnology to construction, medical applications and photonics.

Laser Additive Manufacturing

Laser Additive Manufacturing PDF Author: Milan Brandt
Publisher: Woodhead Publishing
ISBN: 0081004346
Category : Technology & Engineering
Languages : en
Pages : 500

Get Book Here

Book Description
Laser Additive Manufacturing: Materials, Design, Technologies, and Applications provides the latest information on this highly efficient method of layer-based manufacturing using metals, plastics, or composite materials. The technology is particularly suitable for the production of complex components with high precision for a range of industries, including aerospace, automotive, and medical engineering. This book provides a comprehensive review of the technology and its range of applications. Part One looks at materials suitable for laser AM processes, with Part Two discussing design strategies for AM. Parts Three and Four review the most widely-used AM technique, powder bed fusion (PBF) and discuss other AM techniques, such as directed energy deposition, sheet lamination, jetting techniques, extrusion techniques, and vat photopolymerization. The final section explores the range of applications of laser AM. - Provides a comprehensive one-volume overview of advances in laser additive manufacturing - Presents detailed coverage of the latest techniques used for laser additive manufacturing - Reviews both established and emerging areas of application

Integrative Production Technology

Integrative Production Technology PDF Author: Christian Brecher
Publisher: Springer
ISBN: 3319474529
Category : Technology & Engineering
Languages : en
Pages : 1128

Get Book Here

Book Description
This contributed volume contains the research results of the Cluster of Excellence “Integrative Production Technology for High-Wage Countries”, funded by the German Research Society (DFG). The approach to the topic is genuinely interdisciplinary, covering insights from fields such as engineering, material sciences, economics and social sciences. The book contains coherent deterministic models for integrative product creation chains as well as harmonized cybernetic models of production systems. The content is structured into five sections: Integrative Production Technology, Individualized Production, Virtual Production Systems, Integrated Technologies, Self-Optimizing Production Systems and Collaboration Productivity.The target audience primarily comprises research experts and practitioners in the field of production engineering, but the book may also be beneficial for graduate students.

Advances in Production Technology

Advances in Production Technology PDF Author: Christian Brecher
Publisher: Springer
ISBN: 3319123041
Category : Technology & Engineering
Languages : en
Pages : 212

Get Book Here

Book Description
This edited volume contains the selected papers presented at the scientific board meeting of the German Cluster of Excellence on “Integrative Production Technology for High-Wage Countries”, held in November 2014. The topical structure of the book is clustered in six sessions: Integrative Production Technology, Individualised Production, Virtual Production Systems, Integrated Technologies, Self-Optimising Production Systems and Human Factors in Production Technology. The Aachen perspective on a holistic theory of production is complemented by conference papers from external leading researchers in the fields of production, materials science and bordering disciplines. The target audience primarily comprises research experts and practitioners in the field but the book may also be beneficial for graduate students.

Metallic Microlattice Structures

Metallic Microlattice Structures PDF Author: Robert Mines
Publisher: Springer
ISBN: 3030152324
Category : Technology & Engineering
Languages : en
Pages : 115

Get Book Here

Book Description
This work reviews the current state of the art in metallic microlattice structures, manufactured using the additive manufacturing processes of selective laser melting, electron beam melting, binder jetting and photopolymer wave guides. The emphasis is on structural performance (stiffness, strength and collapse). The field of additively manufactured metallic microlattice structures is fast changing and wide ranging, and is being driven by developments in manufacturing processes. This book takes a number of specific structural applications, viz. sandwich beams and panels, and energy absorbers, and a number of conventional metallic materials, and discusses the use of additive manufactured metallic microlattice structures to improve and enhance these structural performances. Structural performances considered includes such non linear effects as plasticity, material rupture, elastic and plastic instabilities, and impact loading. The specific discussions are put into the context of wider issues, such as the effects of realisation processes, the effects of structural scale, use of sophisticated analysis and synthesis methodologies, and the application of existing (conventional) structural theories. In this way, the specific discussions are put into the context of the emerging general fields of Architectured (Architected) Materials and Mechanical Metamaterials.

Additive Manufacturing

Additive Manufacturing PDF Author: Juan Pou
Publisher: Elsevier
ISBN: 0128184124
Category : Technology & Engineering
Languages : en
Pages : 770

Get Book Here

Book Description
Additive Manufacturing explains the background theory, working principles, technical specifications, and latest developments in a wide range of additive manufacturing techniques. Topics addressed include treatments of manufactured parts, surface characterization, and the effects of surface treatments on mechanical behavior. Many different perspectives are covered, including design aspects, technologies, materials and sustainability. Experts in both academia and industry contribute to this comprehensive guide, combining theoretical developments with practical improvements from R&D. This unique guide allows readers to compare the characteristics of different processes, understand how they work, and provide parameters for their effective implementation. This book is part of a four-volume set entitled Handbooks in Advanced Manufacturing. Other titles in the set include Advanced Machining and Finishing, Advanced Welding and Deformation, and Sustainable Manufacturing Processes. - Provides theory, operational parameters, and latest developments in 20 different additive manufacturing processes - Includes contributions from experts in industry and academia with a wide range of disciplinary backgrounds, providing a comprehensive survey of this diverse and influential subject - Includes case studies of innovative additive manufacturing practices from industry

Cellular Solids

Cellular Solids PDF Author: Lorna J. Gibson
Publisher: Cambridge University Press
ISBN: 9780521499118
Category : Science
Languages : en
Pages : 536

Get Book Here

Book Description
In this new edition of their classic work on Cellular Solids, the authors have brought the book completely up to date, including new work on processing of metallic and ceramic foams and on the mechanical, electrical and acoustic properties of cellular solids. Data for commercially available foams are presented on material property charts; two new case studies show how the charts are used for selection of foams in engineering design. Over 150 references appearing in the literature since the publication of the first edition are cited. The text summarises current understanding of the structure and mechanical behaviour of cellular materials, and the ways in which they can be exploited in engineering design. Cellular solids include engineering honeycombs and foams (which can now be made from polymers, metals, ceramics and composites) as well as natural materials, such as wood, cork and cancellous bone.

Modern Manufacturing Processes for Aircraft Materials

Modern Manufacturing Processes for Aircraft Materials PDF Author: Selim Gurgen
Publisher: Elsevier
ISBN: 0323953190
Category : Technology & Engineering
Languages : en
Pages : 371

Get Book Here

Book Description
Approx.530 pages - Provides detailed explanation of modern manufacturing processes used in the aircraft industry - Covers additive manufacturing both for polymeric and metallic materials, electrical discharge machining, laser welding, electron-beam welding, and micro-machining - Explains manufacturing operations for not only metallic materials but also polymers and composites