Catalytic Reactions Studied with Metal-oxide-semiconductor Structures

Catalytic Reactions Studied with Metal-oxide-semiconductor Structures PDF Author: Helen Dannetum
Publisher:
ISBN: 9789178701629
Category :
Languages : en
Pages : 54

Get Book Here

Book Description

Catalytic Reactions Studied with Metal-oxide-semiconductor Structures

Catalytic Reactions Studied with Metal-oxide-semiconductor Structures PDF Author: Helen Dannetum
Publisher:
ISBN: 9789178701629
Category :
Languages : en
Pages : 54

Get Book Here

Book Description


Catalytic Reactions Studied with Metal-oxide-semiconductor Structures

Catalytic Reactions Studied with Metal-oxide-semiconductor Structures PDF Author: Joakim Fogelberg
Publisher:
ISBN: 9789178705672
Category :
Languages : en
Pages : 80

Get Book Here

Book Description


Catalytic Reactions Studied with Metal-oxide-semiconductor Structures

Catalytic Reactions Studied with Metal-oxide-semiconductor Structures PDF Author: Joakim Fogelberg
Publisher:
ISBN: 9789178714155
Category :
Languages : en
Pages : 47

Get Book Here

Book Description


Metal Oxides in Heterogeneous Catalysis

Metal Oxides in Heterogeneous Catalysis PDF Author: Jacques C. Vedrine
Publisher: Elsevier
ISBN: 0128116323
Category : Technology & Engineering
Languages : en
Pages : 620

Get Book Here

Book Description
Metal Oxides in Heterogeneous Catalysis is an overview of the past, present and future of heterogeneous catalysis using metal oxides catalysts. The book presents the historical, theoretical, and practical aspects of metal oxide-based heterogeneous catalysis. Metal Oxides in Heterogeneous Catalysis deals with fundamental information on heterogeneous catalysis, including reaction mechanisms and kinetics approaches.There is also a focus on the classification of metal oxides used as catalysts, preparation methods and touches on zeolites, mesoporous materials and Metal-organic frameworks (MOFs) in catalysis. It will touch on acid or base-type reactions, selective (partial) and total oxidation reactions, and enzymatic type reactions The book also touches heavily on the biomass applications of metal oxide catalysts and environmentally related/depollution reactions such as COVs elimination, DeNOx, and DeSOx. Finally, the book also deals with future trends and prospects in metal oxide-based heterogeneous catalysis. - Presents case studies in each chapter that provide a focus on the industrial applications - Includes fundamentals, key theories and practical applications of metal oxide-based heterogeneous catalysis in one comprehensive resource - Edited, and contributed, by leading experts who provide perspectives on synthesis, characterization and applications

Quantum chemical studies of deposition and catalytic surface reactions

Quantum chemical studies of deposition and catalytic surface reactions PDF Author: Emil Kalered
Publisher: Linköping University Electronic Press
ISBN: 9176853330
Category :
Languages : en
Pages : 73

Get Book Here

Book Description
Quantum chemical calculations have been used to model chemical reactions in epitaxial growth of silicon carbide by chemical vapor deposition (CVD) processes and to study heterogeneous catalytic reactions for methanol synthesis. CVD is a common method to produce high-quality materials and e.g. thin films in the semiconductor industry, and one of the many usages of methanol is as a promising future renewable and sustainable energy carrier. To optimize the chemical processes it is essential to understand the reaction mechanisms. A comprehensive theoretical model for the process is therefore desired in order to be able to explore various variables that are difficult to investigate in situ. In this thesis reaction paths and reaction energies are computed using quantum chemical calculations. The quantum-chemical results can subsequently be used as input for thermodynamic, kinetic and computational fluid dynamics modelling in order to obtain data directly comparable with the experimental observations. For the CVD process, the effect of halogen addition to the gas mixture is studied by modelling the adsorption and diffusion of SiH2, SiCl2 and SiBr2 on the (0001?) 4H-SiC surface. SiH2 was found to bind strongest to the surface and SiBr2 binds slightly stronger than the SiCl2 molecule. The diffusion barrier is shown to be lower for SiH2 than for SiBr2 and SiCl2 which have similar barriers. SiBr2 and SiCl2 are found to have similar physisorption energies and bind stronger than the SiH2 molecule. Gibbs free-energy calculations also indicate that the SiC surface is not fully hydrogen terminated at CVD conditions since missing-neighboring pair of surface hydrogens is found to be common. Calculations for the (0001) surface show that SiCl, SiCl2, SiHCl, SiH, and SiH2 likely adsorb on a methylene site, but the processes are thermodynamically less favorable than their reverse reactions. However, the adsorbed products may be stabilized by subsequent surface reactions to form a larger structure. The formation of these larger structures is found to be fast enough to compete with the desorption processes. Also the Gibbs free energies for adsorption of Si atoms, SiX, SiX2, and SiHX where X is F or Br are presented. Adsorption of Si atoms is shown to be the most thermodynamically favorable reaction followed by SiX, SiHX, and SiX2, X being a halide. The results in this study suggest that the major Si contributors in the SiC–CVD process are Si atoms, SiX and SiH. Methanol can be synthesized from gaseous carbon dioxide and hydrogen using solid metal-metal oxide mixtures acting as heterogeneous catalysts. Since a large surface area of the catalyst enhances the speed of the heterogeneous reaction, the use of nanoparticles (NP) is expected to be advantageous due to the NPs’ large area to surface ratio. The plasma-induced creation of copper NPs is investigated. One important element during particle growth is the charging process where the variation of the work function (W) with particle size is a key quantity, and the variation becomes increasingly pronounced at smaller NP sizes. The work functions are computed for a set of NP charge numbers, sizes and shapes, using copper as a case study. A derived analytical expression for W is shown to give quite accurate estimates provided that the diameter of the NP is larger than about a nanometer and that the NP has relaxed to close to a spherical shape. For smaller sizes W deviates from the approximative expression, and also depends on the charge number. Some consequences of these results for NP charging process are outlined. Key reaction steps in the methanol synthesis reaction mechanism using a Cu/ZrO2 nanoparticle catalyst is investigated. Two different reaction paths for conversion of CO2 to CO is studied. The two paths result in the same complete reaction 2 CO2 ? 2 CO + O2 where ZrO2 (s) acts as a catalyst. The highest activation energies are significantly lower compared to that of the gas phase reaction. The presence of oxygen vacancies at the surface appear to be decisive for the catalytic process to be effective. Studies of the reaction kinetics show that when oxygen vacancies are present on the ZrO2 surface, carbon monoxide is produced within a microsecond. The IR spectra of CO2 and H2 interacting with ZrO2 and Cu under conditions that correspond to the catalyzed CH3OH production process is also studied experimentally and compared to results from the theoretical computations. Surface structures and gas-phase molecules are identified through the spectral lines by matching them to specific vibrational modes from the literature and from the new computational results. Several surface structures are verified and can be used to pin point surface structures in the reaction path. This gives important information that help decipher how the reaction mechanism of the CO2 conversion and ultimately may aid to improve the methanol synthesis process.

Metal Oxide Catalysis

Metal Oxide Catalysis PDF Author: S. David Jackson
Publisher: Wiley-VCH
ISBN: 3527626123
Category : Science
Languages : en
Pages : 887

Get Book Here

Book Description
With its two-volume structure, this handbook and ready reference allows for comprehensive coverage of both characterization and applications, while uniform editing throughout ensures that the structure remains consistent. The result is an up-to-date review of metal oxides in catalysis. The first volume covers a range of techniques that are used to characterize oxides, with each chapter written by an expert in the field. Volume 2 goes on to cover the use of metal oxides in catalytic reactions. For all chemists and engineers working in the field of heterogeneous catalysis.

Energy Research and Development Projects in the Nordic Countries

Energy Research and Development Projects in the Nordic Countries PDF Author:
Publisher: Nordic Council of Ministers
ISBN: 9788773033999
Category : Science
Languages : en
Pages : 672

Get Book Here

Book Description


Characterization of Solid Materials and Heterogeneous Catalysts, 2 Volume Set

Characterization of Solid Materials and Heterogeneous Catalysts, 2 Volume Set PDF Author: Michel Che
Publisher: John Wiley & Sons
ISBN: 3527326871
Category : Technology & Engineering
Languages : en
Pages : 1313

Get Book Here

Book Description
This two-volume book provides an overview of physical techniques used to characterize the structure of solid materials, on the one hand, and to investigate the reactivity of their surface, on the other. Therefore this book is a must-have for anyone working in fields related to surface reactivity. Among the latter, and because of its most important industrial impact, catalysis has been used as the directing thread of the book. After the preface and a general introduction to physical techniques by M. Che and J.C. Vedrine, two overviews on physical techniques are presented by G. Ertl and Sir J.M. Thomas for investigating model catalysts and porous catalysts, respectively. The book is organized into four parts: Molecular/Local Spectroscopies, Macroscopic Techniques, Characterization of the Fluid Phase (Gas and/ or Liquid), and Advanced Characterization. Each chapter focuses upon the following important themes: overview of the technique, most important parameters to interpret the experimental data, practical details, applications of the technique, particularly during chemical processes, with its advantages and disadvantages, conclusions.

Catalysis

Catalysis PDF Author: James Spivey
Publisher: Royal Society of Chemistry
ISBN: 1788017749
Category : Science
Languages : en
Pages : 246

Get Book Here

Book Description
Catalysts are required for a variety of applications and researchers are increasingly challenged to find cost effective and environmentally benign catalysts to use. This volume looks at modern approaches to catalysis and reviews the extensive literature. Chapters highlight reactions active under oxidative coupling of methane conditions and how they are interlinked, heterogeneous nickel catalysts and their use in laboratory and industry, the reaction mechanism of heterogeneous catalysis with the surface science probe, the concepts of electroless deposition (ED) methods for preparation of true bimetallic catalysts, the general subject of metal-support interactions occurring over ruthenium-based catalysts and benzene as the target volatile organic compound (VOC). Appealing broadly to researchers in academia and industry, these illustrative chapters bridge the gap from academic studies in the laboratory to practical applications in industry not only for catalysis field but also for environmental protection. The book will be of great benefit to any researcher wanting a succinct reference on developments in this area now and looking to the future.

New and Future Developments in Catalysis

New and Future Developments in Catalysis PDF Author: Steven L Suib
Publisher: Newnes
ISBN: 0444538836
Category : Technology & Engineering
Languages : en
Pages : 659

Get Book Here

Book Description
New and Future Developments in Catalysis is a package of books that compile the latest ideas concerning alternate and renewable energy sources and the role that catalysis plays in converting new renewable feedstock into biofuels and biochemicals. Both homogeneous and heterogeneous catalysts and catalytic processes will be discussed in a unified and comprehensive approach. There will be extensive cross-referencing within all volumes.This volume presents a complete picture of all carbon dioxide (CO2) sources, outlines the environmental concerns regarding CO2, and critically reviews all current CO2 activation processes. Furthermore, the volume discusses all future developments and gives a critical economic analysis of the various processes. - Offers in-depth coverage of all catalytic topics of current interest and outlines future challenges and research areas - A clear and visual description of all parameters and conditions, enabling the reader to draw conclusions for a particular case - Outlines the catalytic processes applicable to energy generation and design of green processes