Catalyst Development for the Oxidative Coupling of Methane Utilizing Rare-Earth Oxide Based Catalysts

Catalyst Development for the Oxidative Coupling of Methane Utilizing Rare-Earth Oxide Based Catalysts PDF Author: Trenton W. Elkins
Publisher:
ISBN:
Category :
Languages : en
Pages : 227

Get Book Here

Book Description
The alkali doped TbOx/n-MgO catalysts. The Li-TbOx/n-MgO catalyst was found to be more active and stable than supported samaria based catalysts, which is an incredible result. Furthermore, the deactivation associated with lithium doped catalysts was greatly reduced for our coimpregnated lithium containing catalyst and the Na-TbOx/n-MgO catalyst shows minimal deactivation under the same reaction conditions and is the most productive REO containing catalyst discovered in literature when considering production levels with long times on stream.

Catalyst Development for the Oxidative Coupling of Methane Utilizing Rare-Earth Oxide Based Catalysts

Catalyst Development for the Oxidative Coupling of Methane Utilizing Rare-Earth Oxide Based Catalysts PDF Author: Trenton W. Elkins
Publisher:
ISBN:
Category :
Languages : en
Pages : 227

Get Book Here

Book Description
The alkali doped TbOx/n-MgO catalysts. The Li-TbOx/n-MgO catalyst was found to be more active and stable than supported samaria based catalysts, which is an incredible result. Furthermore, the deactivation associated with lithium doped catalysts was greatly reduced for our coimpregnated lithium containing catalyst and the Na-TbOx/n-MgO catalyst shows minimal deactivation under the same reaction conditions and is the most productive REO containing catalyst discovered in literature when considering production levels with long times on stream.

Natural Gas Conversion V

Natural Gas Conversion V PDF Author: A. Parmaliana
Publisher: Elsevier
ISBN: 0080537308
Category : Technology & Engineering
Languages : en
Pages : 1005

Get Book Here

Book Description
On January 1988, the ascertained and economically accessible reserves of Natural Gas (NG) amounted to over 144,000 billion cubic meters worldwide, corresponding to 124 billion tons of oil equivalents (comparable with the liquid oil reserves, which are estimated to be 138 billion TOE). It is hypothesized that the volume of NG reserve will continue to grow at the same rate of the last decade. Forecasts on production indicate a potential increase from about 2,000 billion cubic meters in 1990 to not more than 3,300 billion cubic meters in 2010, even in a high economic development scenario. NG consumption represents only one half of oil: 1.9 billion TOE/y as compared to 3.5 of oil. Consequently, in the future gas will exceed oil as a carbon atom source. In the future the potential for getting energetic vectors or petrochemicals from NG will continue to grow.The topics covered in Natural Gas Conversion V reflect the large global R&D effort to look for new and economic ways of NG exploitation. These range from the direct conversion of methane and light paraffins to the indirect conversion through synthesis gas to fuels and chemicals. Particularly underlined and visible are the technologies already commercially viable.These proceedings prove that mature and technologically feasible processes for natural gas conversion are already available and that new and improved catalytic approaches are currently developing, the validity and feasibility of which will soon be documented. This is an exciting area of modern catalysis, which will certainly open novel and rewarding perspectives for the chemical, energy and petrochemical industries.

Natural Gas Conversion

Natural Gas Conversion PDF Author: A. Holmen
Publisher: Elsevier
ISBN: 0080879179
Category : Science
Languages : en
Pages : 585

Get Book Here

Book Description
These proceedings reflect the extensive fundamental and applied research efforts that are currently being made on the conversion of gas, in particular on the direct conversion of methane. The Symposium in Oslo focused on the following topics: Direct conversion of methane, Fischer-Tropsch chemistry, methanol conversion and natural gas conversion processes. The main aim was to present the state-of-the-art and progress currently being made within each of these areas. The book contains the papers presented and includes plenary lectures, short communications and posters. The papers will be of interest to scientists and engineers working in the field of gas conversion, transportation fuels, primary petrochemicals and catalysis.

Catalysis for C1 Chemistry: Oxidative Coupling of Methane Using Nanofiber Catalysts and Discovery of Catalysts for Atmospheric Reduction of CO2 to Methanol

Catalysis for C1 Chemistry: Oxidative Coupling of Methane Using Nanofiber Catalysts and Discovery of Catalysts for Atmospheric Reduction of CO2 to Methanol PDF Author: Bahman Zohour
Publisher:
ISBN:
Category :
Languages : en
Pages : 168

Get Book Here

Book Description
The goal of this research is to explore novel catalytic material and systems for effective conversion of C1 feed. Catalysis of C1 chemistry is of critical importance for the clean production of fuels and chemicals and future energy sustainability. Herein, two processes were studied: In the first section, a comprehensive study of oxidative coupling of methane (OCM) using novel nanofiber catalysts of mixed metal oxides was undertaken and in the second section, direct catalytic conversion of carbon dioxide (CO2) to methanol was studied, which resulted in discovery of a superior catalytic system for CO2 hydrogenation to methanol. Section 1: Utilization of natural gas as an alternate chemical feedstock to petroleum has been a highly desirable but difficult goal in industrial catalysis. Accordingly, there has been a substantial interest in the oxidative coupling of methane (OCM), which allows for the direct catalytic conversion of methane into economically valuable C2+ hydrocarbons. OCM is a complex reaction process involving heterogeneous catalysis intricately coupled with gas phase reactions; hence, despite decades' worth of research, it has yet to be commercialized. The lack of progress in OCM is primarily due to the following reasons: 1. The absence of a highly active and robust catalyst that can operate at lower temperatures; and 2. Our inadequate understanding of the underlying detailed chemical kinetics mechanism (DCKM) of the OCM process, which impedes the undertaking of quantitative simulations of novel reactor configurations and/or operating strategies. To address these issues, we undertook the following program of studies: 1. Further improved the synthesis of novel nanofiber catalysts by electrospinning, building on the early discovery that La2O3-CeO2 nanofibers were highly active and robust OCM catalysts; 2. Applied our novel microprobe sampling system to OCM reactors for the acquisition of spatially resolved species concentration and temperatures profiles within the catalytic zone. Our novel sampling approach led to the important discovery that H2 is produced very early in the OCM catalytic zone, an observation that was completely missed in all prior studies. The application of our novel microprobe system to a dual-bed OCM reactor also demonstrated the feasibility to significantly improve C2+ product yields to 21% (from 16% for single bed) which we plan to further improve by considering more sequential beds; 3. Outlined development and validation of new generation of DCKM for the OCM process using the high-information content of spatial concentration profiles obtained in part 2. Most importantly, to improve the current DCKM literature by considering surface reactions that result in early H2 formation. Validated DCKM represent highly valuable numerical tools that allow for the prediction of the OCM performance of different reactor configurations operating under a broad range of conditions, e.g. high pressures, porous wall reactors etc. Consequently, this new generation of comprehensive DCKM based on the sampling profiles, detailed in this report, will be of considerable use in improving the yields of useful products in the OCM process; 4. Explore novel conditions that include oxygen-feed distributed packed bed OCM reactors and coupled catalytic and non-thermal plasma OCM reactors, again to further push the yields for useful C2+ products. The details of the proposed approach for implementing such reactor configurations and development of a new generation of DCKM for the OCM process is outlined in the future work, Chapter 4, of section 1 of the report. Section 2: Direct catalytic conversion of carbon dioxide to liquid fuels and basic chemicals, such as methanol, using solar-derived hydrogen at or near ambient pressure is a highly desirable goal in heterogeneous catalysis. When realized, this technology will pave the way for a sustainable society together with decentralized power generation. Here we report a novel class of holmium (Ho) containing multi-metal oxide Cu catalysts discovered through the application of high-throughput methods. In particular, ternary systems of Cu-GaOx-HoOy > Cu-CeOx-HoOy ~ Cu-LaOx-HoOy supported on -Al2O3 exhibited superior methanol production (10x) with less CO formation than previously reported catalysts at atmospheric pressure. Holmium was shown to be highly dispersed as few-atom clusters, suggesting that the formation of tri-metallic sites could be the key for the promotion of methanol synthesis by Ho.

Solar-Energy-Mediated Methane Conversion Over Nanometal and Semiconductor Catalysts

Solar-Energy-Mediated Methane Conversion Over Nanometal and Semiconductor Catalysts PDF Author: Hui Song
Publisher: Springer Nature
ISBN: 9813341572
Category : Science
Languages : en
Pages : 152

Get Book Here

Book Description
This book demonstrates that solar energy, the most abundant and clean renewable energy, can be utilized to drive methane activation and conversion under mild conditions. The book reports that coupling solar energy and thermal energy can significantly enhance methane conversion at mild temperatures using plasmonic nanometal-based catalysts, with a substantial decrease in apparent activation energy of methane conversion. Furthermore, this book, for the first time, reports the direct photocatalytic methane oxidation into liquid oxygenates (methanol and formaldehyde) with only molecular oxygen in pure water at room temperature with high yield and selectivity over nanometals and semiconductors (zinc oxide and titanium dioxide). These findings are a big stride toward methane conversion and inspire researchers to develop strategies for efficient and selective conversion of methane to high-value-added chemicals under mild conditions.

Catalytic Conversion of Carbon Monoxide and Methane Over Metal and Metal Oxide Catalysts

Catalytic Conversion of Carbon Monoxide and Methane Over Metal and Metal Oxide Catalysts PDF Author: Wenchi Liu
Publisher:
ISBN:
Category :
Languages : en
Pages : 93

Get Book Here

Book Description
Catalysis is of vital importance in a wide range of areas including energy processing and chemical production. Catalytic conversion of C1 sources such as carbon monoxide and methane to make hydrocarbon fuels and oxygenated products has far reaching implications especially in the context of the gradual depletion of crude oil resource and the potential surge in the natural gas production in the coming decades. The control over reaction activity and selectivity for the conversion CO and CH4 in the Fischer–Tropsch synthesis and oxidative coupling of methane (OCM) have received tremendous attention and have been proved challenging. This dissertation focuses on the catalytic conversion of CO (Fischer–Tropsch synthesis) using supported cobalt based bimetallic nanoparticle model catalysts and the oxidative coupling of methane with noble metal promoted metal oxide catalysts. Using colloidal synthesis, a series of cobalt based bimetallic nanoparticles Co–M (M = Mn, Ru, Rh, and Re) with well-defined sizes, shapes, and compositions were obtained. Detailed synthesis procedures were presented and key synthetic parameters were discussed. The as-synthesized nanoparticles were subjected to extensive in-situ X-ray spectroscopy studies using ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and X-ray absorption spectroscopy (XAS) under catalytic relevant conditions. Composition wise, the results indicate the surface concentration of Co on the as-synthesized Co–M bimetallic particles is slightly less than the bulk atomic Co %. While oxidation treatment led to a slight increase of the surface Co, major effect was seen after the reduction treatment where surface segregation of the second metal resulted in a drastic decrease of the surface Co content. The effect is more pronounced at elevated reduction temperatures. Under reaction conditions, the surface compositions remained similar to those after the reduction treatment at high temperatures. Among the bimetallics tested, the Co–Mn system is relatively less susceptible to surface reconstructions induced by oxidation and reduction treatments. In addition, the reducibility of Co was also shown to be modified depending on the second metal present and Re was proved to be most efficient in leading to a facile reduction of Co. Catalytic performance of the bimetallic catalysts supported on mesoporous silica MCF–17 indicates a positive effect in the catalytic activity for Co–Rh and Co–Mn systems, while Co–Re and Co–Cu showed decreased activity. Less pronounced promotion effect of the second metal on the product distribution was observed with only a slight increase in the selectivity towards C5+ products. The selectivities for CH4 and C5+ of the various Co–M bimetallic catalysts generally resemble those of pure Co catalysts. Although in extremely low selectivity, alcohols were also formed with Co–Rh and Co–Cu bimetallic catalysts. The appearance of longer chain alcohol such as propanol, which was not present for pure Co catalysts, is an evidence for potential synergistic promotion. For oxidative coupling of methane (OCM), the promotion effect of noble metals (Pt, Ir, and Rh) on the performance of MnxOy-Na2WO4/MCF–17 catalysts was investigated. The introduction of noble metals had little effect on the surface area and phase composition of the original catalyst but led to a more reduced nature of the surface oxide species. Catalytic study revealed an enhanced selectivity towards both C2 and C3 hydrocarbons as compared to the undoped MnxOy-Na2WO4/MCF–17 catalyst in the order of Rh-doped > Ir-doped > Pt-doped samples together with a lower olefin to paraffin ratio. A more optimized strength of interaction between the carbon intermediates and the catalyst surface was suggested, which in combination with the improved reducibility of Mn and W species are believed to be responsible for the improved performance. In addition, monodispersed leaf-like manganese–tungsten–oxide (Mn–W–Ox) nanoparticles and hydroxylated hexagonal boron nitride (h-BN) were synthesized and used as novel catalysts in OCM reaction. Preliminary results indicate that the MCF–17 supported Mn–W–Ox nanoparticle catalyst showed a CH4 conversion of 5.4% and C2 selectivity of 42% with good stability over time. On the other hand, hydroxylated h-BN exhibited good activity (~20% CH4 conversion) with moderate selectivity towards C2 hydrocarbons (20%–30%). However, the hydroxylated h-BN catalysts faced serious deactivation, which was not eliminated by lowering the reaction temperature or the oxygen concentration in the reaction gas feed.

Metal Oxides in Heterogeneous Catalysis

Metal Oxides in Heterogeneous Catalysis PDF Author: Jacques C. Vedrine
Publisher: Elsevier
ISBN: 0128116323
Category : Technology & Engineering
Languages : en
Pages : 620

Get Book Here

Book Description
Metal Oxides in Heterogeneous Catalysis is an overview of the past, present and future of heterogeneous catalysis using metal oxides catalysts. The book presents the historical, theoretical, and practical aspects of metal oxide-based heterogeneous catalysis. Metal Oxides in Heterogeneous Catalysis deals with fundamental information on heterogeneous catalysis, including reaction mechanisms and kinetics approaches.There is also a focus on the classification of metal oxides used as catalysts, preparation methods and touches on zeolites, mesoporous materials and Metal-organic frameworks (MOFs) in catalysis. It will touch on acid or base-type reactions, selective (partial) and total oxidation reactions, and enzymatic type reactions The book also touches heavily on the biomass applications of metal oxide catalysts and environmentally related/depollution reactions such as COVs elimination, DeNOx, and DeSOx. Finally, the book also deals with future trends and prospects in metal oxide-based heterogeneous catalysis. - Presents case studies in each chapter that provide a focus on the industrial applications - Includes fundamentals, key theories and practical applications of metal oxide-based heterogeneous catalysis in one comprehensive resource - Edited, and contributed, by leading experts who provide perspectives on synthesis, characterization and applications

Oxidative Coupling of Methane

Oxidative Coupling of Methane PDF Author: Sanjay Krishna Agarwal
Publisher:
ISBN:
Category : Methane
Languages : en
Pages : 173

Get Book Here

Book Description


The Oxidative Coupling of Methane by Lanthanum Oxide Catalysts

The Oxidative Coupling of Methane by Lanthanum Oxide Catalysts PDF Author: Richard Paul Taylor
Publisher:
ISBN:
Category :
Languages : en
Pages : 296

Get Book Here

Book Description


Mechanistic Studies on the Oxidative Coupling of Methane

Mechanistic Studies on the Oxidative Coupling of Methane PDF Author: Chunlei Shi
Publisher:
ISBN:
Category :
Languages : en
Pages : 324

Get Book Here

Book Description