Carrier Dynamics in Quantum Well and Quantum Dot Lasers

Carrier Dynamics in Quantum Well and Quantum Dot Lasers PDF Author: David J. Klotzkin
Publisher:
ISBN:
Category :
Languages : en
Pages : 378

Get Book

Book Description

Carrier Dynamics in Quantum Well and Quantum Dot Lasers

Carrier Dynamics in Quantum Well and Quantum Dot Lasers PDF Author: David J. Klotzkin
Publisher:
ISBN:
Category :
Languages : en
Pages : 378

Get Book

Book Description


Spatio-Temporal Dynamics and Quantum Fluctuations in Semiconductor Lasers

Spatio-Temporal Dynamics and Quantum Fluctuations in Semiconductor Lasers PDF Author: Edeltraud Gehrig
Publisher: Springer Science & Business Media
ISBN: 9783540007418
Category : Technology & Engineering
Languages : en
Pages : 252

Get Book

Book Description
Presents fundamental theories and simulations of the spatio-temporal dynamics and quantum fluctuations in semiconductor lasers. The dynamic interplay of light and matter is theoretically described by taking into account microscopic carrier dynamics, spatially dependent light-field propagation and the influence of spontaneous emission and noise.

Nonlinear and Nonequilibrium Dynamics of Quantum-Dot Optoelectronic Devices

Nonlinear and Nonequilibrium Dynamics of Quantum-Dot Optoelectronic Devices PDF Author: Benjamin Lingnau
Publisher: Springer
ISBN: 3319258052
Category : Science
Languages : en
Pages : 193

Get Book

Book Description
This thesis sheds light on the unique dynamics of optoelectronic devices based on semiconductor quantum-dots. The complex scattering processes involved in filling the optically active quantum-dot states and the presence of charge-carrier nonequilibrium conditions are identified as sources for the distinct dynamical behavior of quantum-dot based devices. Comprehensive theoretical models, which allow for an accurate description of such devices, are presented and applied to recent experimental observations. The low sensitivity of quantum-dot lasers to optical perturbations is directly attributed to their unique charge-carrier dynamics and amplitude-phase-coupling, which is found not to be accurately described by conventional approaches. The potential of quantum-dot semiconductor optical amplifiers for novel applications such as simultaneous multi-state amplification, ultra-wide wavelength conversion, and coherent pulse shaping is investigated. The scattering mechanisms and the unique electronic structure of semiconductor quantum-dots are found to make such devices prime candidates for the implementation of next-generation optoelectronic applications, which could significantly simplify optical telecommunication networks and open up novel high-speed data transmission schemes.

Photonics of Quantum-dot Nanomaterials and Devices

Photonics of Quantum-dot Nanomaterials and Devices PDF Author: Ortwin Hess
Publisher: World Scientific
ISBN: 1848165226
Category : Science
Languages : en
Pages : 182

Get Book

Book Description
1. Introduction to photonic quantum dot nanomaterials and devices. 1.1. Physical properties of quantum dots. 1.2. Active semiconductor gain media. 1.3. Quantum dot lasers. 1.4. Laser cavities -- 2. Theory of quantum dot light-matter dynamics. 2.1. Rate equations. 2.2. Maxwell-Bloch equations. 2.3. Quantum luminescence equations. 2.4. Quantum theoretical description -- 3. Light meets matter I: microscopic carrier effect. 3.1. Dynamics in the active charge carrier plasma. 3.2. Dynamic level hole burning. 3.3. Ultrashort nonlinear gain and index dynamics. 3.4. Conclusion -- 4. Light meets matter II: mesoscopic space-time dynamics. 4.1. Introduction: transverse and longitudinal mode dynamics. 4.2. Influence of the transverse degree of freedom and nano-structuring on nearfield dynamics and spectra. 4.3. Longitudinal modes. 4.4. Coupled space-time dynamics. 4.5. Conclusion -- 5. Performance and characterisation: properties on large time and length scales. 5.1. Introduction. 5.2. Spatial and spectral beam quality. 5.3. Dynamic amplitude phase coupling. 5.4. Conclusion -- 6. Nonlinear pulse propagation in semiconductor quantum dot lasers. 6.1. Dynamic shaping of short optical pulses. 6.2. Nonlinear femtosecond dynamics. 6.3. Conclusion -- 7. High-speed dynamics. 7.1. Mode-locking in multi-section quantum dot lasers. 7.2. Dependence of pulse duration on injection current, bias voltage and device geometry. 7.3. Radio frequency spectra of the emitted light. 7.4. Short-pulse optimisation. 7.5. Conclusion -- 8. Quantum dot random lasers. 8.1. Spatially inhomogeneous semiconductor quantum dot ensembles. 8.2. Coherence properties. 8.3. Random lasing in semiconductor quantum dot ensembles. 8.4. Conclusion -- 9. Coherence properties of quantum dot micro-cavity lasers. 9.1. Introduction. 9.2. Radial signal propagation and coherence trapping. 9.3. Influence of disorder. 9.4. Conclusions

Carrier Dynamics in Mid-Infrared Quantum Well Lasers Using Time-Resolved Photoluminescence

Carrier Dynamics in Mid-Infrared Quantum Well Lasers Using Time-Resolved Photoluminescence PDF Author: Steven M. Gorski
Publisher:
ISBN: 9781423509721
Category : Hot carriers
Languages : en
Pages : 93

Get Book

Book Description
Research in mid-infrared laser technology has uncovered numerous applications for commercial and government use. A limiting factor for mid- infrared semiconductors is nonradiative recombination, which is a process that produces excess heat without emitting a photon. Nonradiative recombination mechanisms occur over a short time period and difficult to measure. Growth methods have significantly reduced the nonradiative recombination in some materials. The objective of this research is to further the understanding of how quantum well structures impact carrier recombination. InAsSb/InAlASb and InAs/ GaInSb quantum well structures were studied with time-resolved photoluminescence utilizing upconversion, a non-linear wave mixing technique. This research reports Shockley-Read-Hall, radiative, and Auger recombination coefficients at 77k. The luminescence rise times of type I and type II structures are also compared. The number of states available within the quantum well was found to dictate how quickly carriers were able to recombine radiatively. Finally, spectral data was taken to examine the spectral decay of the luminescence. Carrier temperatures were extracted from the spectral data. Type I structures were found to have hotter carrier temperatures and higher Auger coefficients than type II structures.

Nano-Optoelectronics

Nano-Optoelectronics PDF Author: Marius Grundmann
Publisher: Springer Science & Business Media
ISBN: 9783540433941
Category : Technology & Engineering
Languages : en
Pages : 472

Get Book

Book Description
Traces the quest to use nanostructured media for novel and improved optoelectronic devices. Leading experts - among them Nobel laureate Zhores Alferov - write here about the fundamental concepts behind nano-optoelectronics, the material basis, physical phenomena, device physics and systems.

Quantum Dot Lasers

Quantum Dot Lasers PDF Author: Victor Mikhailovich Ustinov
Publisher:
ISBN: 9780198526797
Category : Science
Languages : en
Pages : 306

Get Book

Book Description
The book addresses issues associated with physics and technology of injection lasers based on self-organized quantum dots. Fundamental and technological aspects of quantum dot edge-emitting lasers and VCSELs, their current status and future prospects are summarized and reviewed. Basic principles of QD formation using self-organization phenomena are reviewed. Structural and optical properties of self-organized QDs are considered with a number of examples in different material systems. Recent achievements in controlling the QD properties including the effects of vertical stacking, changing the matrix bandgap and the surface density of QDs are reviewed. The authors focus on the use of self-organized quantum dots in laser structures, fabrication and characterization of edge and surface emitting diode lasers, their properties and optimization with special attention paid to the relationship between structural and electronic properties of QDs and laser characteristics. The threshold and power characteristics of the state-of-the-art QD lasers are demonstrated. Issues related to the long-wavelength (1.3-mm) lasers on a GaAs substrate are also addressed and recent results on InGaAsN-based diode lasers presented for the purpose of comparison.

Quantum Confined Laser Devices

Quantum Confined Laser Devices PDF Author: Peter Blood
Publisher: Oxford University Press
ISBN: 0199644519
Category : Science
Languages : en
Pages : 433

Get Book

Book Description
This title takes students, final year undergraduates and graduates, and researchers, along the path to understand quantum processes in semiconductors, and to enable them, as researchers, to contribute to further advances and inventions.

Dynamics of Quantum Dot Lasers

Dynamics of Quantum Dot Lasers PDF Author: Christian Otto
Publisher: Springer Science & Business Media
ISBN: 3319037862
Category : Science
Languages : en
Pages : 301

Get Book

Book Description
This thesis deals with the dynamics of state-of-the-art nanophotonic semiconductor structures, providing essential information on fundamental aspects of nonlinear dynamical systems on the one hand, and technological applications in modern telecommunication on the other. Three different complex laser structures are considered in detail: (i) a quantum-dot-based semiconductor laser under optical injection from a master laser, (ii) a quantum-dot laser with optical feedback from an external resonator, and (iii) a passively mode-locked quantum-well semiconductor laser with saturable absorber under optical feedback from an external resonator. Using a broad spectrum of methods, both numerical and analytical, this work achieves new fundamental insights into the interplay of microscopically based nonlinear laser dynamics and optical perturbations by delayed feedback and injection.

Quantum Well Lasers

Quantum Well Lasers PDF Author: Peter S. Zory Jr.
Publisher: Elsevier
ISBN: 0080515584
Category : Technology & Engineering
Languages : en
Pages : 522

Get Book

Book Description
This book provides the information necessary for the reader to achieve a thorough understanding of all aspects of QW lasers - from the basic mechanism of optical gain, through the current technolgoical state of the art, to the future technologies of quantum wires and quantum dots. In view of the growing importance of QW lasers, this book should be read by all those with an active interest in laser science and technology, from the advanced student to the experienced laser scientist. * The first comprehensive book-length treatment of quantum well lasers * Provides a detailed treatment of quantum well laser basics * Covers strained quantum well lasers * Explores the different state-of-the-art quantum well laser types * Provides key information on future laser technologies