Carbon Sequestration with Enhanced Gas Recovery

Carbon Sequestration with Enhanced Gas Recovery PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 11

Get Book Here

Book Description
Depleted natural gas reservoirs are promising targets for carbon dioxide sequestration. Although depleted, these reservoirs are not devoid of methane, and carbon dioxide injection may allow enhanced production of methane by reservoir repressurization or pressure maintenance. Based on the favorable results of numerous simulation studies, we propose a field test of the Carbon Sequestration with Enhanced Gas Recovery (CSEGR) process. The objective of the field test is to evaluate the feasibility of CSEGR in terms of reservoir processes such as injectivity, repressurization, flow and transport of carbon dioxide, and enhanced production of methane. The main criteria for the field site include small reservoir volume and high permeability so that increases in pressure and enhanced recovery will occur over a reasonably short time period. The Rio Vista Gas Field in the delta of California's Central Valley offers potential as a test site, although we are currently looking broadly for other potential sites of opportunity.

Carbon Sequestration with Enhanced Gas Recovery

Carbon Sequestration with Enhanced Gas Recovery PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 11

Get Book Here

Book Description
Depleted natural gas reservoirs are promising targets for carbon dioxide sequestration. Although depleted, these reservoirs are not devoid of methane, and carbon dioxide injection may allow enhanced production of methane by reservoir repressurization or pressure maintenance. Based on the favorable results of numerous simulation studies, we propose a field test of the Carbon Sequestration with Enhanced Gas Recovery (CSEGR) process. The objective of the field test is to evaluate the feasibility of CSEGR in terms of reservoir processes such as injectivity, repressurization, flow and transport of carbon dioxide, and enhanced production of methane. The main criteria for the field site include small reservoir volume and high permeability so that increases in pressure and enhanced recovery will occur over a reasonably short time period. The Rio Vista Gas Field in the delta of California's Central Valley offers potential as a test site, although we are currently looking broadly for other potential sites of opportunity.

Carbon Sequestration in Natural Gas Reservoirs

Carbon Sequestration in Natural Gas Reservoirs PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Get Book Here

Book Description
Natural gas reservoirs are obvious targets for carbon sequestration by direct carbon dioxide (CO2) injection by virtue of their proven record of gas production and integrity against gas escape. Carbon sequestration in depleted natural gas reservoirs can be coupled with enhanced gas production by injecting CO2 into the reservoir as it is being produced, a process called Carbon Sequestration with Enhanced Gas Recovery (CSEGR). In this process, supercritical CO2 is injected deep in the reservoir while methane (CH4) is produced at wells some distance away. The active injection of CO2 causes repressurization and CH4 displacement to allow the control and enhancement of gas recovery relative to water-drive or depletion-drive reservoir operations. Carbon dioxide undergoes a large change in density as CO2 gas passes through the critical pressure at temperatures near the critical temperature. This feature makes CO2 a potentially effective cushion gas for gas storage reservoirs. Thus at the end of the CSEGR process when the reservoir is filled with CO2, additional benefit of the reservoir may be obtained through its operation as a natural gas storage reservoir. In this paper, we present discussion and simulation results from TOUGH2/EOS7C of gas mixture property prediction, gas injection, repressurization, migration, and mixing processes that occur in gas reservoirs under active CO2 injection.

Mechanisms for CO2 Sequestration in Geological Formations and Enhanced Gas Recovery

Mechanisms for CO2 Sequestration in Geological Formations and Enhanced Gas Recovery PDF Author: Roozbeh Khosrokhavar
Publisher: Springer
ISBN: 3319230875
Category : Technology & Engineering
Languages : en
Pages : 106

Get Book Here

Book Description
This book gives background information why shale formations in the world are important both for storage capacity and enhanced gas recovery (EGR). Part of this book investigates the sequestration capacity in geological formations and the mechanisms for the enhanced storage rate of CO2 in an underlying saline aquifer. The growing concern about global warming has increased interest in geological storage of carbon dioxide (CO2). The main mechanism of the enhancement, viz., the occurrence of gravity fingers, which are the vehicles of enhanced transport in saline aquifers, can be visualized using the Schlieren technique. In addition high pressure experiments confirmed that the storage rate is indeed enhanced in porous media. The book is appropriate for graduate students, researchers and advanced professionals in petroleum and chemical engineering. It provides the interested reader with in-depth insights into the possibilities and challenges of CO2 storage and the EGR prospect.

Economic Feasibility of Carbon Sequestration with Enhanced Gas Recovery (CSEGR).

Economic Feasibility of Carbon Sequestration with Enhanced Gas Recovery (CSEGR). PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
Prior reservoir simulation and laboratory studies have suggested that injecting carbon dioxide into mature natural gas reservoirs for carbon sequestration with enhanced gas recovery (CSEGR) is technically feasible. Reservoir simulations show that the high density of carbon dioxide can be exploited to favor displacement of methane with limited gas mixing by injecting carbon dioxide in low regions of a reservoir while producing from higher regions in the reservoir. Economic sensitivity analysis of a prototypical CSEGR application at a large depleting gas field in California shows that the largest expense will be for carbon dioxide capture, purification, compression, and transport to the field. Other incremental costs for CSEGR include: (1) new or reconditioned wells for carbon dioxide injection, methane production, and monitoring; (2) carbon dioxide distribution within the field; and, (3) separation facilities to handle eventual carbon dioxide contamination of the methane. Economic feasibility is most sensitive to wellhead methane price, carbon dioxide supply costs, and the ratio of carbon dioxide injected to incremental methane produced. Our analysis suggests that CSEGR may be economically feasible at carbon dioxide supply costs of up to $4 to $12/t ($0.20 to $0.63/Mcf). Although this analysis is based on a particular gas field, the approach is general and can be applied to other gas fields. This economic analysis, along with reservoir simulation and laboratory studies that suggest the technical feasibility of CSEGR, demonstrates that CSEGR can be feasible and that a field pilot study of the process should be undertaken to test the concept further.

Carbon Dioxide Chemistry, Capture and Oil Recovery

Carbon Dioxide Chemistry, Capture and Oil Recovery PDF Author: Iyad Karamé
Publisher: BoD – Books on Demand
ISBN: 178923574X
Category : Science
Languages : en
Pages : 268

Get Book Here

Book Description
Fossil fuels still need to meet the growing demand of global economic development, yet they are often considered as one of the main sources of the CO2 release in the atmosphere. CO2, which is the primary greenhouse gas (GHG), is periodically exchanged among the land surface, ocean, and atmosphere where various creatures absorb and produce it daily. However, the balanced processes of producing and consuming the CO2 by nature are unfortunately faced by the anthropogenic release of CO2. Decreasing the emissions of these greenhouse gases is becoming more urgent. Therefore, carbon sequestration and storage (CSS) of CO2, its utilization in oil recovery, as well as its conversion into fuels and chemicals emerge as active options and potential strategies to mitigate CO2 emissions and climate change, energy crises, and challenges in the storage of energy.

CO2 Injection for Enhanced Gas Production and Carbon Sequestration

CO2 Injection for Enhanced Gas Production and Carbon Sequestration PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Get Book Here

Book Description
Analyses suggest that carbon dioxide (CO2) can be injected into depleted gas reservoirs to enhance methane (CH4) recovery for periods on the order of 10 years, while simultaneously sequestering large amounts of CO2. Simulations applicable to the Rio Vista Gas Field in California show that mixing between CO2 and CH4 is slow relative to repressurization, and that vertical density stratification favors enhanced gas recovery.

CLEAN

CLEAN PDF Author: Michael Kühn
Publisher: Springer Science & Business Media
ISBN: 3642316778
Category : Science
Languages : en
Pages : 202

Get Book Here

Book Description
The project CLEAN (CO2 Large-Scale Enhanced Gas Recovery in the Altmark Natural Gas Field) provides site specific knowledge for a potential future pilot project. This contributed volume gives an overview and final results of the entire project which is finalized to the end of 2012.

Optimal Process Design for Coupled CO2 Sequestration and Enhanced Gas Recovery in Carbonate Reservoirs

Optimal Process Design for Coupled CO2 Sequestration and Enhanced Gas Recovery in Carbonate Reservoirs PDF Author: Uchenna Odi Odi
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Increasing energy demand combined with public concern for the environment obligates the oil industry to supply oil and natural gas to the public while minimizing the carbon footprint due to its activities. Today, fossil fuels are essential in meeting the global energy needs, but have the undesirable outcome of producing carbon dioxide. Carbon dioxide (CO2) injection in reservoirs is an appealing Enhanced Oil/Gas Recovery method for increasing hydrocarbon production by using the miscible interactions between hydrocarbon and carbon dioxide. Carbon dioxide flooding is beneficial to the environment and to petroleum producers, since it can store carbon dioxide while increasing oil and natural gas production. A practical challenge in combining CO2 Sequestration with Enhanced Gas Recovery (EGR) is determining the optimal process parameters that maximize the project value. This research describes the development of a procedure to determine the best process conditions for the CO2 EGR and Sequestration process. Analysis includes experimental work that illustrates that CO2 is able to reduce the dew point pressure of wet gas fluids and that reservoir fluid phase changes can be indicated by changes in total fluid compressiblity. In addition, compositional simulation illustrates that CO2 improves condensate and natural gas recovery. Studies show that the ideal reservoir management strategy for CO2 EGR is to set the CO2 injectors' bottom hole pressure to the initial reservoir pressure. An economic model is developed that illustrates the capital investment necessary for the CO2 EGR and Sequestration process for different capture technologies and levels of captured CO2 impurity. This economic model is utilized in conjunction with an optimization algorithm to illustrate the potential profitability of theCO2 EGR and Sequestration project. To illustrate the economic risk associated with CO2 EGR and Sequestration project, probabilistic analysis is used to illustrate scenarios where the technology is successful. This work is applicable to carbonate wet gas reservoirs that have significant gas production problems associated with condensate blockage. This work is also useful in modeling the economics associated with CO2 EGR and CO2 Sequestration. The strategy developed in this work is applicable to designing process conditions that correspond to optimal CO2 EGR and optimal CO2 Sequestration. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/151726

The Three Sisters

The Three Sisters PDF Author: Ying Wu
Publisher: John Wiley & Sons
ISBN: 1119510082
Category : Science
Languages : en
Pages : 366

Get Book Here

Book Description
This is the seventh volume in the series, Advances in Natural Gas Engineering, focusing on carbon dioxide (CO2) capture and sequestration, acid gas injection, and enhanced oil recovery, the “three sisters” of natural gas engineering. This volume includes information for both upstream and downstream operations, including chapters detailing the most cutting-edge techniques in acid gas injection, carbon capture, chemical and thermodynamic models, and much more. Written by some of the most well-known and respected chemical and process engineers working with natural gas today, the chapters in this important volume represent the most state-of-the-art processes and operations being used in the field. Not available anywhere else, this volume is a must-have for any chemical engineer, chemist, or process engineer in the industry. Advances in Natural Gas Engineering is an ongoing series of books meant to form the basis for the working library of any engineer working in natural gas today.

Carbon Capture and Sequestration

Carbon Capture and Sequestration PDF Author: M. Granger Morgan
Publisher: Routledge
ISBN: 1136293744
Category : Business & Economics
Languages : en
Pages : 306

Get Book Here

Book Description
The United States produces over seventy percent of all its electricity from fossil fuels and nearly fifty percent from coal alone. Worldwide, forty-one percent of all electricity is generated from coal, making it the single most important fuel source for electricity generation, followed by natural gas. This means that an essential part of any portfolio for emissions reduction will be technology to capture carbon dioxide and permanently sequester it in suitable geologic formations. While many nations have incentivized development of CCS technology, large regulatory and legal barriers exist that have yet to be addressed. This book identifies current law and regulation that applies to geologic sequestration in the U.S., the regulatory needs to ensure that geologic sequestration is carried out safely and effectively, and barriers that current law and regulation present to timely deployment of CCS. The authors find the three most significant barriers to be: an ill-defined process to access pore space in deep saline formations; a piecemeal, procedural, and static permitting system; and the lack of a clear, responsible plan to address long-term liability associated with sequestered CO2. The book provides legislative options to remove these barriers and address the regulatory needs, and makes recommendations on the best options to encourage safe, effective deployment of CCS. The authors operationalize their recommendations in legislative language, which is of particular use to policymakers faced with the challenge of addressing climate change and energy.