Author: Amar Sahay
Publisher: Business Expert Press
ISBN: 1631574809
Category : Business & Economics
Languages : en
Pages : 321
Book Description
This business analytics (BA) text discusses the models based on fact-based data to measure past business performance to guide an organization in visualizing and predicting future business performance and outcomes. It provides a comprehensive overview of analytics in general with an emphasis on predictive analytics. Given the booming interest in analytics and data science, this book is timely and informative. It brings many terms, tools, and methods of analytics together. The first three chapters provide an introduction to BA, importance of analytics, types of BA-descriptive, predictive, and prescriptive-along with the tools and models. Business intelligence (BI) and a case on descriptive analytics are discussed. Additionally, the book discusses on the most widely used predictive models, including regression analysis, forecasting, data mining, and an introduction to recent applications of predictive analytics-machine learning, neural networks, and artificial intelligence. The concluding chapter discusses on the current state, job outlook, and certifications in analytics.
Data Mining and Business Analytics with R
Author: Johannes Ledolter
Publisher: John Wiley & Sons
ISBN: 1118572157
Category : Mathematics
Languages : en
Pages : 304
Book Description
Collecting, analyzing, and extracting valuable information from a large amount of data requires easily accessible, robust, computational and analytical tools. Data Mining and Business Analytics with R utilizes the open source software R for the analysis, exploration, and simplification of large high-dimensional data sets. As a result, readers are provided with the needed guidance to model and interpret complicated data and become adept at building powerful models for prediction and classification. Highlighting both underlying concepts and practical computational skills, Data Mining and Business Analytics with R begins with coverage of standard linear regression and the importance of parsimony in statistical modeling. The book includes important topics such as penalty-based variable selection (LASSO); logistic regression; regression and classification trees; clustering; principal components and partial least squares; and the analysis of text and network data. In addition, the book presents: A thorough discussion and extensive demonstration of the theory behind the most useful data mining tools Illustrations of how to use the outlined concepts in real-world situations Readily available additional data sets and related R code allowing readers to apply their own analyses to the discussed materials Numerous exercises to help readers with computing skills and deepen their understanding of the material Data Mining and Business Analytics with R is an excellent graduate-level textbook for courses on data mining and business analytics. The book is also a valuable reference for practitioners who collect and analyze data in the fields of finance, operations management, marketing, and the information sciences.
Publisher: John Wiley & Sons
ISBN: 1118572157
Category : Mathematics
Languages : en
Pages : 304
Book Description
Collecting, analyzing, and extracting valuable information from a large amount of data requires easily accessible, robust, computational and analytical tools. Data Mining and Business Analytics with R utilizes the open source software R for the analysis, exploration, and simplification of large high-dimensional data sets. As a result, readers are provided with the needed guidance to model and interpret complicated data and become adept at building powerful models for prediction and classification. Highlighting both underlying concepts and practical computational skills, Data Mining and Business Analytics with R begins with coverage of standard linear regression and the importance of parsimony in statistical modeling. The book includes important topics such as penalty-based variable selection (LASSO); logistic regression; regression and classification trees; clustering; principal components and partial least squares; and the analysis of text and network data. In addition, the book presents: A thorough discussion and extensive demonstration of the theory behind the most useful data mining tools Illustrations of how to use the outlined concepts in real-world situations Readily available additional data sets and related R code allowing readers to apply their own analyses to the discussed materials Numerous exercises to help readers with computing skills and deepen their understanding of the material Data Mining and Business Analytics with R is an excellent graduate-level textbook for courses on data mining and business analytics. The book is also a valuable reference for practitioners who collect and analyze data in the fields of finance, operations management, marketing, and the information sciences.
Business Analytics, Volume II
Author: Amar Sahay
Publisher: Business Expert Press
ISBN: 1631574809
Category : Business & Economics
Languages : en
Pages : 321
Book Description
This business analytics (BA) text discusses the models based on fact-based data to measure past business performance to guide an organization in visualizing and predicting future business performance and outcomes. It provides a comprehensive overview of analytics in general with an emphasis on predictive analytics. Given the booming interest in analytics and data science, this book is timely and informative. It brings many terms, tools, and methods of analytics together. The first three chapters provide an introduction to BA, importance of analytics, types of BA-descriptive, predictive, and prescriptive-along with the tools and models. Business intelligence (BI) and a case on descriptive analytics are discussed. Additionally, the book discusses on the most widely used predictive models, including regression analysis, forecasting, data mining, and an introduction to recent applications of predictive analytics-machine learning, neural networks, and artificial intelligence. The concluding chapter discusses on the current state, job outlook, and certifications in analytics.
Publisher: Business Expert Press
ISBN: 1631574809
Category : Business & Economics
Languages : en
Pages : 321
Book Description
This business analytics (BA) text discusses the models based on fact-based data to measure past business performance to guide an organization in visualizing and predicting future business performance and outcomes. It provides a comprehensive overview of analytics in general with an emphasis on predictive analytics. Given the booming interest in analytics and data science, this book is timely and informative. It brings many terms, tools, and methods of analytics together. The first three chapters provide an introduction to BA, importance of analytics, types of BA-descriptive, predictive, and prescriptive-along with the tools and models. Business intelligence (BI) and a case on descriptive analytics are discussed. Additionally, the book discusses on the most widely used predictive models, including regression analysis, forecasting, data mining, and an introduction to recent applications of predictive analytics-machine learning, neural networks, and artificial intelligence. The concluding chapter discusses on the current state, job outlook, and certifications in analytics.
Big Data and Business Analytics
Author: Jay Liebowitz
Publisher: CRC Press
ISBN: 1466565799
Category : Business & Economics
Languages : en
Pages : 293
Book Description
"The chapters in this volume offer useful case studies, technical roadmaps, lessons learned, and a few prescriptions todo this, avoid that.'"-From the Foreword by Joe LaCugna, Ph.D., Enterprise Analytics and Business Intelligence, Starbucks Coffee CompanyWith the growing barrage of "big data," it becomes vitally important for organizations to mak
Publisher: CRC Press
ISBN: 1466565799
Category : Business & Economics
Languages : en
Pages : 293
Book Description
"The chapters in this volume offer useful case studies, technical roadmaps, lessons learned, and a few prescriptions todo this, avoid that.'"-From the Foreword by Joe LaCugna, Ph.D., Enterprise Analytics and Business Intelligence, Starbucks Coffee CompanyWith the growing barrage of "big data," it becomes vitally important for organizations to mak
Predictive Business Analytics
Author: Lawrence Maisel
Publisher: John Wiley & Sons
ISBN: 1118240154
Category : Business & Economics
Languages : en
Pages : 276
Book Description
Discover the breakthrough tool your company can use to make winning decisions This forward-thinking book addresses the emergence of predictive business analytics, how it can help redefine the way your organization operates, and many of the misconceptions that impede the adoption of this new management capability. Filled with case examples, Predictive Business Analytics defines ways in which specific industries have applied these techniques and tools and how predictive business analytics can complement other financial applications such as budgeting, forecasting, and performance reporting. Examines how predictive business analytics can help your organization understand its various drivers of performance, their relationship to future outcomes, and improve managerial decision-making Looks at how to develop new insights and understand business performance based on extensive use of data, statistical and quantitative analysis, and explanatory and predictive modeling Written for senior financial professionals, as well as general and divisional senior management Visionary and effective, Predictive Business Analytics reveals how you can use your business's skills, technologies, tools, and processes for continuous analysis of past business performance to gain forward-looking insight and drive business decisions and actions.
Publisher: John Wiley & Sons
ISBN: 1118240154
Category : Business & Economics
Languages : en
Pages : 276
Book Description
Discover the breakthrough tool your company can use to make winning decisions This forward-thinking book addresses the emergence of predictive business analytics, how it can help redefine the way your organization operates, and many of the misconceptions that impede the adoption of this new management capability. Filled with case examples, Predictive Business Analytics defines ways in which specific industries have applied these techniques and tools and how predictive business analytics can complement other financial applications such as budgeting, forecasting, and performance reporting. Examines how predictive business analytics can help your organization understand its various drivers of performance, their relationship to future outcomes, and improve managerial decision-making Looks at how to develop new insights and understand business performance based on extensive use of data, statistical and quantitative analysis, and explanatory and predictive modeling Written for senior financial professionals, as well as general and divisional senior management Visionary and effective, Predictive Business Analytics reveals how you can use your business's skills, technologies, tools, and processes for continuous analysis of past business performance to gain forward-looking insight and drive business decisions and actions.
Business Analytics, Volume I
Author: Amar Sahay
Publisher: Business Expert Press
ISBN: 1631573322
Category : Business & Economics
Languages : en
Pages : 206
Book Description
Business Analytics: A Data-Driven Decision Making Approach for Business-Part I,/i> provides an overview of business analytics (BA), business intelligence (BI), and the role and importance of these in the modern business decision-making. The book discusses all these areas along with three main analytics categories: (1) descriptive, (2) predictive, and (3) prescriptive analytics with their tools and applications in business. This volume focuses on descriptive analytics that involves the use of descriptive and visual or graphical methods, numerical methods, as well as data analysis tools, big data applications, and the use of data dashboards to understand business performance. The highlights of this volume are: Business analytics at a glance; Business intelligence (BI), data analytics; Data, data types, descriptive analytics; Data visualization tools; Data visualization with big data; Descriptive analytics-numerical methods; Case analysis with computer applications.
Publisher: Business Expert Press
ISBN: 1631573322
Category : Business & Economics
Languages : en
Pages : 206
Book Description
Business Analytics: A Data-Driven Decision Making Approach for Business-Part I,/i> provides an overview of business analytics (BA), business intelligence (BI), and the role and importance of these in the modern business decision-making. The book discusses all these areas along with three main analytics categories: (1) descriptive, (2) predictive, and (3) prescriptive analytics with their tools and applications in business. This volume focuses on descriptive analytics that involves the use of descriptive and visual or graphical methods, numerical methods, as well as data analysis tools, big data applications, and the use of data dashboards to understand business performance. The highlights of this volume are: Business analytics at a glance; Business intelligence (BI), data analytics; Data, data types, descriptive analytics; Data visualization tools; Data visualization with big data; Descriptive analytics-numerical methods; Case analysis with computer applications.
Business Analytics
Author: S. Christian Albright
Publisher:
ISBN: 9789814834391
Category : Decision making
Languages : en
Pages : 952
Book Description
Publisher:
ISBN: 9789814834391
Category : Decision making
Languages : en
Pages : 952
Book Description
Data Visualization, Volume II
Author: Amar Sahay
Publisher: Business Expert Press
ISBN: 1631577328
Category : Business & Economics
Languages : en
Pages : 193
Book Description
This book discusses data and information visualization techniques-the decision-making tools with applications in health care, finance, manufacturing engineering, process improvement, product design, and others. These tools are an excellent means of viewing the current state of the process and improving them. The initial chapters discuss data analysis, the current trends in visualization, the concepts of systems and processes from which data are collected. The second part is devoted to quality tools-a set of graphical and information visualization tools in data analysis, decision-making, and Lean Six-Sigma quality. The eight basic tools of quality discussed are the Process Maps, Check Sheets, Histograms, Scatter Diagrams, Run Charts, Control Charts, Cause-and-Effect Diagrams, and Pareto Charts. The new quality tools presented are the Affinity, Tree, and Matrix Diagrams, Interrelationship Digraph, Prioritizing Matrices, Process Decision Program Chart, and Activity Network Diagram along with Quality Function Deployment (QFD) and Multivari Charts.
Publisher: Business Expert Press
ISBN: 1631577328
Category : Business & Economics
Languages : en
Pages : 193
Book Description
This book discusses data and information visualization techniques-the decision-making tools with applications in health care, finance, manufacturing engineering, process improvement, product design, and others. These tools are an excellent means of viewing the current state of the process and improving them. The initial chapters discuss data analysis, the current trends in visualization, the concepts of systems and processes from which data are collected. The second part is devoted to quality tools-a set of graphical and information visualization tools in data analysis, decision-making, and Lean Six-Sigma quality. The eight basic tools of quality discussed are the Process Maps, Check Sheets, Histograms, Scatter Diagrams, Run Charts, Control Charts, Cause-and-Effect Diagrams, and Pareto Charts. The new quality tools presented are the Affinity, Tree, and Matrix Diagrams, Interrelationship Digraph, Prioritizing Matrices, Process Decision Program Chart, and Activity Network Diagram along with Quality Function Deployment (QFD) and Multivari Charts.
Win with Advanced Business Analytics
Author: Jean-Paul Isson
Publisher: John Wiley & Sons
ISBN: 1118417089
Category : Business & Economics
Languages : en
Pages : 416
Book Description
Plain English guidance for strategic business analytics and big data implementation In today's challenging economy, business analytics and big data have become more and more ubiquitous. While some businesses don't even know where to start, others are struggling to move from beyond basic reporting. In some instances management and executives do not see the value of analytics or have a clear understanding of business analytics vision mandate and benefits. Win with Advanced Analytics focuses on integrating multiple types of intelligence, such as web analytics, customer feedback, competitive intelligence, customer behavior, and industry intelligence into your business practice. Provides the essential concept and framework to implement business analytics Written clearly for a nontechnical audience Filled with case studies across a variety of industries Uniquely focuses on integrating multiple types of big data intelligence into your business Companies now operate on a global scale and are inundated with a large volume of data from multiple locations and sources: B2B data, B2C data, traffic data, transactional data, third party vendor data, macroeconomic data, etc. Packed with case studies from multiple countries across a variety of industries, Win with Advanced Analytics provides a comprehensive framework and applications of how to leverage business analytics/big data to outpace the competition.
Publisher: John Wiley & Sons
ISBN: 1118417089
Category : Business & Economics
Languages : en
Pages : 416
Book Description
Plain English guidance for strategic business analytics and big data implementation In today's challenging economy, business analytics and big data have become more and more ubiquitous. While some businesses don't even know where to start, others are struggling to move from beyond basic reporting. In some instances management and executives do not see the value of analytics or have a clear understanding of business analytics vision mandate and benefits. Win with Advanced Analytics focuses on integrating multiple types of intelligence, such as web analytics, customer feedback, competitive intelligence, customer behavior, and industry intelligence into your business practice. Provides the essential concept and framework to implement business analytics Written clearly for a nontechnical audience Filled with case studies across a variety of industries Uniquely focuses on integrating multiple types of big data intelligence into your business Companies now operate on a global scale and are inundated with a large volume of data from multiple locations and sources: B2B data, B2C data, traffic data, transactional data, third party vendor data, macroeconomic data, etc. Packed with case studies from multiple countries across a variety of industries, Win with Advanced Analytics provides a comprehensive framework and applications of how to leverage business analytics/big data to outpace the competition.
Introduction to Business Analytics, Second Edition
Author: Majid Nabavi
Publisher: Business Expert Press
ISBN: 1953349757
Category : Business & Economics
Languages : en
Pages : 180
Book Description
This book presents key concepts related to quantitative analysis in business. It is targeted at business students (both undergraduate and graduate) taking an introductory core course. Business analytics has grown to be a key topic in business curricula, and there is a need for stronger quantitative skills and understanding of fundamental concepts. This second edition adds material on Tableau, a very useful software for business analytics. This supplements the tools from Excel covered in the first edition, to include Data Analysis Toolpak and SOLVER.
Publisher: Business Expert Press
ISBN: 1953349757
Category : Business & Economics
Languages : en
Pages : 180
Book Description
This book presents key concepts related to quantitative analysis in business. It is targeted at business students (both undergraduate and graduate) taking an introductory core course. Business analytics has grown to be a key topic in business curricula, and there is a need for stronger quantitative skills and understanding of fundamental concepts. This second edition adds material on Tableau, a very useful software for business analytics. This supplements the tools from Excel covered in the first edition, to include Data Analysis Toolpak and SOLVER.
Business Analytics
Author: Amar Sahay
Publisher:
ISBN: 9781631574795
Category : Business & Economics
Languages : en
Pages : 406
Book Description
This business analytics (BA) text discusses the models based on fact-based data to measure past business performance to guide an organization in visualizing and predicting future business performance and outcomes. It provides a comprehensive overview of analytics in general with an emphasis on predictive analytics. Given the booming interest in analytics and data science, this book is timely and informative. It brings many terms, tools, and methods of analytics together. The first three chapters provide an introduction to BA, importance of analytics, types of BA-descriptive, predictive, and prescriptive-along with the tools and models. Business intelligence (BI) and a case on descriptive analytics are discussed. Additionally, the book discusses on the most widely used predictive models, including regression analysis, forecasting, data mining, and an introduction to recent applications of predictive analytics-machine learning, neural networks, and artificial intelligence. The concluding chapter discusses on the current state, job outlook, and certifications in analytics.
Publisher:
ISBN: 9781631574795
Category : Business & Economics
Languages : en
Pages : 406
Book Description
This business analytics (BA) text discusses the models based on fact-based data to measure past business performance to guide an organization in visualizing and predicting future business performance and outcomes. It provides a comprehensive overview of analytics in general with an emphasis on predictive analytics. Given the booming interest in analytics and data science, this book is timely and informative. It brings many terms, tools, and methods of analytics together. The first three chapters provide an introduction to BA, importance of analytics, types of BA-descriptive, predictive, and prescriptive-along with the tools and models. Business intelligence (BI) and a case on descriptive analytics are discussed. Additionally, the book discusses on the most widely used predictive models, including regression analysis, forecasting, data mining, and an introduction to recent applications of predictive analytics-machine learning, neural networks, and artificial intelligence. The concluding chapter discusses on the current state, job outlook, and certifications in analytics.