Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 994
Book Description
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 994
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 994
Book Description
Technical Reports Awareness Circular : TRAC.
Author:
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 516
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 516
Book Description
Energy Research Abstracts
Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 548
Book Description
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 548
Book Description
Government Reports Announcements & Index
Author:
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 650
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 650
Book Description
High Tc Superconductors
Author: J. Dumas
Publisher: Elsevier
ISBN: 0444596542
Category : Technology & Engineering
Languages : en
Pages : 763
Book Description
A wide range of progress in materials development [single crystals, ceramics, thin films, wire and tapes] is reported in the 169 papers in this volume. The main focus of the papers is in attaining a better understanding of the relationship between microstructure and electrical properties. Invited papers cover topics such as the effects of substitution and doping; multilayers; nanostructure characterisation; electric field effects in High Tc Superconductors [HTS]; surface stability; critical currents; flux pinning and magnetooptic imaging of flux patterns; effects of irradiation induced defects; properties and preparation of materials; microwave properties and electronic devices. A clearly broadened basis for understanding processes and mechanisms in [HTS] is portrayed. Appreciable progress has been achieved in the reproducible manufacturing of high quality materials supported by very efficient methods in microstructural analysis. This essential improvement is reflected in the increased number of practical devices encouraging the use of HTS in applications for electronics and power engineering, all of which are reviewed in depth in this work.
Publisher: Elsevier
ISBN: 0444596542
Category : Technology & Engineering
Languages : en
Pages : 763
Book Description
A wide range of progress in materials development [single crystals, ceramics, thin films, wire and tapes] is reported in the 169 papers in this volume. The main focus of the papers is in attaining a better understanding of the relationship between microstructure and electrical properties. Invited papers cover topics such as the effects of substitution and doping; multilayers; nanostructure characterisation; electric field effects in High Tc Superconductors [HTS]; surface stability; critical currents; flux pinning and magnetooptic imaging of flux patterns; effects of irradiation induced defects; properties and preparation of materials; microwave properties and electronic devices. A clearly broadened basis for understanding processes and mechanisms in [HTS] is portrayed. Appreciable progress has been achieved in the reproducible manufacturing of high quality materials supported by very efficient methods in microstructural analysis. This essential improvement is reflected in the increased number of practical devices encouraging the use of HTS in applications for electronics and power engineering, all of which are reviewed in depth in this work.
Advances in High Temperature Superconductors and their applications
Author: S. MOHAN
Publisher: MJP Publisher
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 233
Book Description
Prof. Heike Kamerlingh Onnes discovered superconductivity while measuring resistivity of mercury. Surprisingly the resistivity of mercury ceased at 4.2 K and this phenomenon was known as superconductivity. He realized the importance of this discovery in producing large magnetic fieldspl. delateIt was realized that superconductivity is in a new thermodynamic state with peculiar electric and magnetic properties. This paved the way to discover more superconductors. Simple elements such as Tin, Indium or lead showed the highest critical temperature (Tc) 7.2 K. They were called as Type 1 superconductors. Niobium-nitride was found to superconduct at 16 K at 1941 and Vanadium-silicon showed superconductive properties at 17.5 K at 1953. Nb alloys and binary or more complex compounds such as Nb3Sn (Tc – 18 K), Nb-Ti (Tc -9 K), Ga, V with Tc,23 K became type II superconductors. Thereafter, there was not much improvement in the development of superconductor although wonderful applications were expected from superconductors. After three decades, Fullerenes, like ceramic superconductors, are discovered. A decade ago MgB2 was discovered with Tc = 39 K. These superconductors were routinely produced into formof wires for producing larger magnetic fields. In all these cases cooling was effectively done by liquid Helium. A comprehensive microscopic theory of superconductivity in metals was proposed in 1957 by John Bardeen, Leon Cooper and Robert Schrieffer (the so-called “BCS” theory) for which they received the Nobel Prize in Physics. In a major breakthrough, George Bednorz and Karl Mueller discovered a brittle ceramic superconductivity in the family of cuprates at 30 K in 1986 and a new era began. Inspired by the work of Bednorz and Mueller on high temperature superconductivity (HTS), Paul Chu and his associates at the University of Houston discovered in 1987, 123 compounds. That is, YBCO (Yttrium1- Barium2-Copper3- Oxygen7) and iso-structural RBCO (Rare-earth1-Barium2-Copper3-Oxygen7) have a Tc of 93 K. Prior to 1987, all superconducting materials had lower critical temperatures (Tc’s) and therefore functioned only at temperatures near the boiling point of liquid helium (4.2 K) or liquid hydrogen (20.28 K), with the highest being Nb3Ge at 23 K. They were known as low temperature superconductors. YBCO was the first material to become superconducting above 77 K, (boiling point of liquid nitrogen) and subsequently a series of high temperature superconducting materials were discovered. These superconducting materials are widely known as High temperature superconductors as these Tc’s exceeded the limit prescribed by BCS theory. HTSCs are potentially valuable as liquid nitrogen is cheaper than liquid helium. YBCO possesses superior superconducting and physical properties. YBCO receiver coils in NMR-spectrometers have improved the resolution NMR spectrometers by a factor of 3 compared to that achievable with conventional coils. Paul Chu’s group holds the current Tc-record of 164 K in the mercury barium based cuprate superconductor under pressure. Their work led to a rapid succession of new high temperature superconducting materials, ushering in a new era in material science, chemistry and technology. Added to this the structure of Bi2Sr2Ca2Cu2O10(BiSCCO) high temperature superconductive compound having T= 110 K was reported. In 1993, mercuric-cuprates, perovskite ceramic superconductors with the transition temperatures Tc =138 K was also reported.
Publisher: MJP Publisher
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 233
Book Description
Prof. Heike Kamerlingh Onnes discovered superconductivity while measuring resistivity of mercury. Surprisingly the resistivity of mercury ceased at 4.2 K and this phenomenon was known as superconductivity. He realized the importance of this discovery in producing large magnetic fieldspl. delateIt was realized that superconductivity is in a new thermodynamic state with peculiar electric and magnetic properties. This paved the way to discover more superconductors. Simple elements such as Tin, Indium or lead showed the highest critical temperature (Tc) 7.2 K. They were called as Type 1 superconductors. Niobium-nitride was found to superconduct at 16 K at 1941 and Vanadium-silicon showed superconductive properties at 17.5 K at 1953. Nb alloys and binary or more complex compounds such as Nb3Sn (Tc – 18 K), Nb-Ti (Tc -9 K), Ga, V with Tc,23 K became type II superconductors. Thereafter, there was not much improvement in the development of superconductor although wonderful applications were expected from superconductors. After three decades, Fullerenes, like ceramic superconductors, are discovered. A decade ago MgB2 was discovered with Tc = 39 K. These superconductors were routinely produced into formof wires for producing larger magnetic fields. In all these cases cooling was effectively done by liquid Helium. A comprehensive microscopic theory of superconductivity in metals was proposed in 1957 by John Bardeen, Leon Cooper and Robert Schrieffer (the so-called “BCS” theory) for which they received the Nobel Prize in Physics. In a major breakthrough, George Bednorz and Karl Mueller discovered a brittle ceramic superconductivity in the family of cuprates at 30 K in 1986 and a new era began. Inspired by the work of Bednorz and Mueller on high temperature superconductivity (HTS), Paul Chu and his associates at the University of Houston discovered in 1987, 123 compounds. That is, YBCO (Yttrium1- Barium2-Copper3- Oxygen7) and iso-structural RBCO (Rare-earth1-Barium2-Copper3-Oxygen7) have a Tc of 93 K. Prior to 1987, all superconducting materials had lower critical temperatures (Tc’s) and therefore functioned only at temperatures near the boiling point of liquid helium (4.2 K) or liquid hydrogen (20.28 K), with the highest being Nb3Ge at 23 K. They were known as low temperature superconductors. YBCO was the first material to become superconducting above 77 K, (boiling point of liquid nitrogen) and subsequently a series of high temperature superconducting materials were discovered. These superconducting materials are widely known as High temperature superconductors as these Tc’s exceeded the limit prescribed by BCS theory. HTSCs are potentially valuable as liquid nitrogen is cheaper than liquid helium. YBCO possesses superior superconducting and physical properties. YBCO receiver coils in NMR-spectrometers have improved the resolution NMR spectrometers by a factor of 3 compared to that achievable with conventional coils. Paul Chu’s group holds the current Tc-record of 164 K in the mercury barium based cuprate superconductor under pressure. Their work led to a rapid succession of new high temperature superconducting materials, ushering in a new era in material science, chemistry and technology. Added to this the structure of Bi2Sr2Ca2Cu2O10(BiSCCO) high temperature superconductive compound having T= 110 K was reported. In 1993, mercuric-cuprates, perovskite ceramic superconductors with the transition temperatures Tc =138 K was also reported.
Government Reports Annual Index
Author:
Publisher:
ISBN:
Category : Government reports announcements & index
Languages : en
Pages : 1708
Book Description
Publisher:
ISBN:
Category : Government reports announcements & index
Languages : en
Pages : 1708
Book Description
Energy Research Abstracts
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 532
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 532
Book Description
ERDA Energy Research Abstracts
Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 848
Book Description
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 848
Book Description
High Tc Superconductors: Magnetic Interactions - Proceedings Of The Workshop
Author: Lawrence H Bennett
Publisher: World Scientific
ISBN: 9813201398
Category : Technology & Engineering
Languages : en
Pages : 437
Book Description
This Workshop addresses the role of magnetic interactions in the various aspects of high Tc superconducting materials, including the fundamental nature of the elementary excitations and their effect on the measured microscopic and macroscopic magnetic properties of these materials. Applications involving the magnetic behaviour of high Tc superconductors is a special feature of this Workshop.
Publisher: World Scientific
ISBN: 9813201398
Category : Technology & Engineering
Languages : en
Pages : 437
Book Description
This Workshop addresses the role of magnetic interactions in the various aspects of high Tc superconducting materials, including the fundamental nature of the elementary excitations and their effect on the measured microscopic and macroscopic magnetic properties of these materials. Applications involving the magnetic behaviour of high Tc superconductors is a special feature of this Workshop.