Author: Marek Kimmel
Publisher: Springer Science & Business Media
ISBN: 0387216391
Category : Mathematics
Languages : en
Pages : 242
Book Description
This book introduces biological examples of Branching Processes from molecular and cellular biology as well as from the fields of human evolution and medicine and discusses them in the context of the relevant mathematics. It provides a useful introduction to how the modeling can be done and for what types of problems branching processes can be used.
Branching Processes in Biology
Author: Marek Kimmel
Publisher: Springer Science & Business Media
ISBN: 0387216391
Category : Mathematics
Languages : en
Pages : 242
Book Description
This book introduces biological examples of Branching Processes from molecular and cellular biology as well as from the fields of human evolution and medicine and discusses them in the context of the relevant mathematics. It provides a useful introduction to how the modeling can be done and for what types of problems branching processes can be used.
Publisher: Springer Science & Business Media
ISBN: 0387216391
Category : Mathematics
Languages : en
Pages : 242
Book Description
This book introduces biological examples of Branching Processes from molecular and cellular biology as well as from the fields of human evolution and medicine and discusses them in the context of the relevant mathematics. It provides a useful introduction to how the modeling can be done and for what types of problems branching processes can be used.
Branching Processes
Author: Patsy Haccou
Publisher: Cambridge University Press
ISBN: 9780521832205
Category : Mathematics
Languages : en
Pages : 342
Book Description
This book covers the mathematical idea of branching processes, and tailors it for a biological audience.
Publisher: Cambridge University Press
ISBN: 9780521832205
Category : Mathematics
Languages : en
Pages : 342
Book Description
This book covers the mathematical idea of branching processes, and tailors it for a biological audience.
Branching Processes in Biology
Author: Marek Kimmel
Publisher: Springer Science & Business Media
ISBN: 038795340X
Category : Mathematics
Languages : en
Pages : 242
Book Description
Biological examples of branching processes from molecular and cellular biology are introduced in this volume, as well as from the fields of human evolution and medicine. It will interest scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, and others. 54 illustrations.
Publisher: Springer Science & Business Media
ISBN: 038795340X
Category : Mathematics
Languages : en
Pages : 242
Book Description
Biological examples of branching processes from molecular and cellular biology are introduced in this volume, as well as from the fields of human evolution and medicine. It will interest scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, and others. 54 illustrations.
Workshop on Branching Processes and Their Applications
Author: Miguel González
Publisher: Springer Science & Business Media
ISBN: 3642111564
Category : Mathematics
Languages : en
Pages : 304
Book Description
One of the charms of mathematics is the contrast between its generality and its applicability to concrete, even everyday, problems. Branching processes are typical in this. Their niche of mathematics is the abstract pattern of reproduction, sets of individuals changing size and composition through their members reproducing; in other words, what Plato might have called the pure idea behind demography, population biology, cell kinetics, molecular replication, or nuclear ?ssion, had he known these scienti?c ?elds. Even in the performance of algorithms for sorting and classi?cation there is an inkling of the same pattern. In special cases, general properties of the abstract ideal then interact with the physical or biological or whatever properties at hand. But the population, or bran- ing, pattern is strong; it tends to dominate, and here lies the reason for the extreme usefulness of branching processes in diverse applications. Branching is a clean and beautiful mathematical pattern, with an intellectually challenging intrinsic structure, and it pervades the phenomena it underlies.
Publisher: Springer Science & Business Media
ISBN: 3642111564
Category : Mathematics
Languages : en
Pages : 304
Book Description
One of the charms of mathematics is the contrast between its generality and its applicability to concrete, even everyday, problems. Branching processes are typical in this. Their niche of mathematics is the abstract pattern of reproduction, sets of individuals changing size and composition through their members reproducing; in other words, what Plato might have called the pure idea behind demography, population biology, cell kinetics, molecular replication, or nuclear ?ssion, had he known these scienti?c ?elds. Even in the performance of algorithms for sorting and classi?cation there is an inkling of the same pattern. In special cases, general properties of the abstract ideal then interact with the physical or biological or whatever properties at hand. But the population, or bran- ing, pattern is strong; it tends to dominate, and here lies the reason for the extreme usefulness of branching processes in diverse applications. Branching is a clean and beautiful mathematical pattern, with an intellectually challenging intrinsic structure, and it pervades the phenomena it underlies.
Introduction to Stochastic Processes with R
Author: Robert P. Dobrow
Publisher: John Wiley & Sons
ISBN: 1118740653
Category : Mathematics
Languages : en
Pages : 504
Book Description
An introduction to stochastic processes through the use of R Introduction to Stochastic Processes with R is an accessible and well-balanced presentation of the theory of stochastic processes, with an emphasis on real-world applications of probability theory in the natural and social sciences. The use of simulation, by means of the popular statistical software R, makes theoretical results come alive with practical, hands-on demonstrations. Written by a highly-qualified expert in the field, the author presents numerous examples from a wide array of disciplines, which are used to illustrate concepts and highlight computational and theoretical results. Developing readers’ problem-solving skills and mathematical maturity, Introduction to Stochastic Processes with R features: More than 200 examples and 600 end-of-chapter exercises A tutorial for getting started with R, and appendices that contain review material in probability and matrix algebra Discussions of many timely and stimulating topics including Markov chain Monte Carlo, random walk on graphs, card shuffling, Black–Scholes options pricing, applications in biology and genetics, cryptography, martingales, and stochastic calculus Introductions to mathematics as needed in order to suit readers at many mathematical levels A companion web site that includes relevant data files as well as all R code and scripts used throughout the book Introduction to Stochastic Processes with R is an ideal textbook for an introductory course in stochastic processes. The book is aimed at undergraduate and beginning graduate-level students in the science, technology, engineering, and mathematics disciplines. The book is also an excellent reference for applied mathematicians and statisticians who are interested in a review of the topic.
Publisher: John Wiley & Sons
ISBN: 1118740653
Category : Mathematics
Languages : en
Pages : 504
Book Description
An introduction to stochastic processes through the use of R Introduction to Stochastic Processes with R is an accessible and well-balanced presentation of the theory of stochastic processes, with an emphasis on real-world applications of probability theory in the natural and social sciences. The use of simulation, by means of the popular statistical software R, makes theoretical results come alive with practical, hands-on demonstrations. Written by a highly-qualified expert in the field, the author presents numerous examples from a wide array of disciplines, which are used to illustrate concepts and highlight computational and theoretical results. Developing readers’ problem-solving skills and mathematical maturity, Introduction to Stochastic Processes with R features: More than 200 examples and 600 end-of-chapter exercises A tutorial for getting started with R, and appendices that contain review material in probability and matrix algebra Discussions of many timely and stimulating topics including Markov chain Monte Carlo, random walk on graphs, card shuffling, Black–Scholes options pricing, applications in biology and genetics, cryptography, martingales, and stochastic calculus Introductions to mathematics as needed in order to suit readers at many mathematical levels A companion web site that includes relevant data files as well as all R code and scripts used throughout the book Introduction to Stochastic Processes with R is an ideal textbook for an introductory course in stochastic processes. The book is aimed at undergraduate and beginning graduate-level students in the science, technology, engineering, and mathematics disciplines. The book is also an excellent reference for applied mathematicians and statisticians who are interested in a review of the topic.
Stochastic Processes in Cell Biology
Author: Paul C. Bressloff
Publisher: Springer Nature
ISBN: 3030725154
Category : Mathematics
Languages : en
Pages : 773
Book Description
This book develops the theory of continuous and discrete stochastic processes within the context of cell biology. In the second edition the material has been significantly expanded, particularly within the context of nonequilibrium and self-organizing systems. Given the amount of additional material, the book has been divided into two volumes, with volume I mainly covering molecular processes and volume II focusing on cellular processes. A wide range of biological topics are covered in the new edition, including stochastic ion channels and excitable systems, molecular motors, stochastic gene networks, genetic switches and oscillators, epigenetics, normal and anomalous diffusion in complex cellular environments, stochastically-gated diffusion, active intracellular transport, signal transduction, cell sensing, bacterial chemotaxis, intracellular pattern formation, cell polarization, cell mechanics, biological polymers and membranes, nuclear structure and dynamics, biological condensates, molecular aggregation and nucleation, cellular length control, cell mitosis, cell motility, cell adhesion, cytoneme-based morphogenesis, bacterial growth, and quorum sensing. The book also provides a pedagogical introduction to the theory of stochastic and nonequilibrium processes – Fokker Planck equations, stochastic differential equations, stochastic calculus, master equations and jump Markov processes, birth-death processes, Poisson processes, first passage time problems, stochastic hybrid systems, queuing and renewal theory, narrow capture and escape, extreme statistics, search processes and stochastic resetting, exclusion processes, WKB methods, large deviation theory, path integrals, martingales and branching processes, numerical methods, linear response theory, phase separation, fluctuation-dissipation theorems, age-structured models, and statistical field theory. This text is primarily aimed at graduate students and researchers working in mathematical biology, statistical and biological physicists, and applied mathematicians interested in stochastic modeling. Applied probabilists should also find it of interest. It provides significant background material in applied mathematics and statistical physics, and introduces concepts in stochastic and nonequilibrium processes via motivating biological applications. The book is highly illustrated and contains a large number of examples and exercises that further develop the models and ideas in the body of the text. It is based on a course that the author has taught at the University of Utah for many years.
Publisher: Springer Nature
ISBN: 3030725154
Category : Mathematics
Languages : en
Pages : 773
Book Description
This book develops the theory of continuous and discrete stochastic processes within the context of cell biology. In the second edition the material has been significantly expanded, particularly within the context of nonequilibrium and self-organizing systems. Given the amount of additional material, the book has been divided into two volumes, with volume I mainly covering molecular processes and volume II focusing on cellular processes. A wide range of biological topics are covered in the new edition, including stochastic ion channels and excitable systems, molecular motors, stochastic gene networks, genetic switches and oscillators, epigenetics, normal and anomalous diffusion in complex cellular environments, stochastically-gated diffusion, active intracellular transport, signal transduction, cell sensing, bacterial chemotaxis, intracellular pattern formation, cell polarization, cell mechanics, biological polymers and membranes, nuclear structure and dynamics, biological condensates, molecular aggregation and nucleation, cellular length control, cell mitosis, cell motility, cell adhesion, cytoneme-based morphogenesis, bacterial growth, and quorum sensing. The book also provides a pedagogical introduction to the theory of stochastic and nonequilibrium processes – Fokker Planck equations, stochastic differential equations, stochastic calculus, master equations and jump Markov processes, birth-death processes, Poisson processes, first passage time problems, stochastic hybrid systems, queuing and renewal theory, narrow capture and escape, extreme statistics, search processes and stochastic resetting, exclusion processes, WKB methods, large deviation theory, path integrals, martingales and branching processes, numerical methods, linear response theory, phase separation, fluctuation-dissipation theorems, age-structured models, and statistical field theory. This text is primarily aimed at graduate students and researchers working in mathematical biology, statistical and biological physicists, and applied mathematicians interested in stochastic modeling. Applied probabilists should also find it of interest. It provides significant background material in applied mathematics and statistical physics, and introduces concepts in stochastic and nonequilibrium processes via motivating biological applications. The book is highly illustrated and contains a large number of examples and exercises that further develop the models and ideas in the body of the text. It is based on a course that the author has taught at the University of Utah for many years.
An Introduction to Stochastic Processes with Applications to Biology
Author: Linda J. S. Allen
Publisher: CRC Press
ISBN: 143989468X
Category : Mathematics
Languages : en
Pages : 486
Book Description
An Introduction to Stochastic Processes with Applications to Biology, Second Edition presents the basic theory of stochastic processes necessary in understanding and applying stochastic methods to biological problems in areas such as population growth and extinction, drug kinetics, two-species competition and predation, the spread of epidemics, and
Publisher: CRC Press
ISBN: 143989468X
Category : Mathematics
Languages : en
Pages : 486
Book Description
An Introduction to Stochastic Processes with Applications to Biology, Second Edition presents the basic theory of stochastic processes necessary in understanding and applying stochastic methods to biological problems in areas such as population growth and extinction, drug kinetics, two-species competition and predation, the spread of epidemics, and
Branching Processes in Biology
Author: Marek Kimmel
Publisher: Springer
ISBN: 9781493915606
Category : Mathematics
Languages : en
Pages : 280
Book Description
This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second expanded edition adds new material published during the last decade, with nearly 200 new references. More material has been added on infinitely-dimensional multitype processes, including the infinitely-dimensional linear-fractional case. Hypergeometric function treatment of the special case of the Griffiths-Pakes infinite allele branching process has also been added. There are additional applications of recent molecular processes and connections with systems biology are explored, and a new chapter on genealogies of branching processes and their applications. Reviews of First Edition: "This is a significant book on applications of branching processes in biology, and it is highly recommended for those readers who are interested in the application and development of stochastic models, particularly those with interests in cellular and molecular biology." (Siam Review, Vol. 45 (2), 2003) “This book will be very interesting and useful for mathematicians, statisticians and biologists as well, and especially for researchers developing mathematical methods in biology, medicine and other natural sciences.” (Short Book Reviews of the ISI, Vol. 23 (2), 2003)
Publisher: Springer
ISBN: 9781493915606
Category : Mathematics
Languages : en
Pages : 280
Book Description
This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second expanded edition adds new material published during the last decade, with nearly 200 new references. More material has been added on infinitely-dimensional multitype processes, including the infinitely-dimensional linear-fractional case. Hypergeometric function treatment of the special case of the Griffiths-Pakes infinite allele branching process has also been added. There are additional applications of recent molecular processes and connections with systems biology are explored, and a new chapter on genealogies of branching processes and their applications. Reviews of First Edition: "This is a significant book on applications of branching processes in biology, and it is highly recommended for those readers who are interested in the application and development of stochastic models, particularly those with interests in cellular and molecular biology." (Siam Review, Vol. 45 (2), 2003) “This book will be very interesting and useful for mathematicians, statisticians and biologists as well, and especially for researchers developing mathematical methods in biology, medicine and other natural sciences.” (Short Book Reviews of the ISI, Vol. 23 (2), 2003)
Stochastic Population and Epidemic Models
Author: Linda J. S. Allen
Publisher: Springer
ISBN: 331921554X
Category : Mathematics
Languages : en
Pages : 55
Book Description
This monograph provides a summary of the basic theory of branching processes for single-type and multi-type processes. Classic examples of population and epidemic models illustrate the probability of population or epidemic extinction obtained from the theory of branching processes. The first chapter develops the branching process theory, while in the second chapter two applications to population and epidemic processes of single-type branching process theory are explored. The last two chapters present multi-type branching process applications to epidemic models, and then continuous-time and continuous-state branching processes with applications. In addition, several MATLAB programs for simulating stochastic sample paths are provided in an Appendix. These notes originated as part of a lecture series on Stochastics in Biological Systems at the Mathematical Biosciences Institute in Ohio, USA. Professor Linda Allen is a Paul Whitfield Horn Professor of Mathematics in the Department of Mathematics and Statistics at Texas Tech University, USA.
Publisher: Springer
ISBN: 331921554X
Category : Mathematics
Languages : en
Pages : 55
Book Description
This monograph provides a summary of the basic theory of branching processes for single-type and multi-type processes. Classic examples of population and epidemic models illustrate the probability of population or epidemic extinction obtained from the theory of branching processes. The first chapter develops the branching process theory, while in the second chapter two applications to population and epidemic processes of single-type branching process theory are explored. The last two chapters present multi-type branching process applications to epidemic models, and then continuous-time and continuous-state branching processes with applications. In addition, several MATLAB programs for simulating stochastic sample paths are provided in an Appendix. These notes originated as part of a lecture series on Stochastics in Biological Systems at the Mathematical Biosciences Institute in Ohio, USA. Professor Linda Allen is a Paul Whitfield Horn Professor of Mathematics in the Department of Mathematics and Statistics at Texas Tech University, USA.
Branching Process Models of Cancer
Author: Richard Durrett
Publisher: Springer
ISBN: 3319160656
Category : Mathematics
Languages : en
Pages : 73
Book Description
This volume develops results on continuous time branching processes and applies them to study rate of tumor growth, extending classic work on the Luria-Delbruck distribution. As a consequence, the author calculate the probability that mutations that confer resistance to treatment are present at detection and quantify the extent of tumor heterogeneity. As applications, the author evaluate ovarian cancer screening strategies and give rigorous proofs for results of Heano and Michor concerning tumor metastasis. These notes should be accessible to students who are familiar with Poisson processes and continuous time Markov chains. Richard Durrett is a mathematics professor at Duke University, USA. He is the author of 8 books, over 200 journal articles, and has supervised more than 40 Ph.D students. Most of his current research concerns the applications of probability to biology: ecology, genetics and most recently cancer.
Publisher: Springer
ISBN: 3319160656
Category : Mathematics
Languages : en
Pages : 73
Book Description
This volume develops results on continuous time branching processes and applies them to study rate of tumor growth, extending classic work on the Luria-Delbruck distribution. As a consequence, the author calculate the probability that mutations that confer resistance to treatment are present at detection and quantify the extent of tumor heterogeneity. As applications, the author evaluate ovarian cancer screening strategies and give rigorous proofs for results of Heano and Michor concerning tumor metastasis. These notes should be accessible to students who are familiar with Poisson processes and continuous time Markov chains. Richard Durrett is a mathematics professor at Duke University, USA. He is the author of 8 books, over 200 journal articles, and has supervised more than 40 Ph.D students. Most of his current research concerns the applications of probability to biology: ecology, genetics and most recently cancer.