Author: Roberto Frigerio
Publisher: American Mathematical Soc.
ISBN: 1470441462
Category : Mathematics
Languages : en
Pages : 213
Book Description
The theory of bounded cohomology, introduced by Gromov in the late 1980s, has had powerful applications in geometric group theory and the geometry and topology of manifolds, and has been the topic of active research continuing to this day. This monograph provides a unified, self-contained introduction to the theory and its applications, making it accessible to a student who has completed a first course in algebraic topology and manifold theory. The book can be used as a source for research projects for master's students, as a thorough introduction to the field for graduate students, and as a valuable landmark text for researchers, providing both the details of the theory of bounded cohomology and links of the theory to other closely related areas. The first part of the book is devoted to settling the fundamental definitions of the theory, and to proving some of the (by now classical) results on low-dimensional bounded cohomology and on bounded cohomology of topological spaces. The second part describes applications of the theory to the study of the simplicial volume of manifolds, to the classification of circle actions, to the analysis of maximal representations of surface groups, and to the study of flat vector bundles with a particular emphasis on the possible use of bounded cohomology in relation with the Chern conjecture. Each chapter ends with a discussion of further reading that puts the presented results in a broader context.
Bounded Cohomology of Discrete Groups
Continuous Bounded Cohomology of Locally Compact Groups
Author: Nicolas Monod
Publisher: Springer
ISBN: 3540449620
Category : Mathematics
Languages : en
Pages : 219
Book Description
Recent research has repeatedly led to connections between important rigidity questions and bounded cohomology. However, the latter has remained by and large intractable. This monograph introduces the functorial study of the continuous bounded cohomology for topological groups, with coefficients in Banach modules. The powerful techniques of this more general theory have successfully solved a number of the original problems in bounded cohomology. As applications, one obtains, in particular, rigidity results for actions on the circle, for representations on complex hyperbolic spaces and on Teichmüller spaces. A special effort has been made to provide detailed proofs or references in quite some generality.
Publisher: Springer
ISBN: 3540449620
Category : Mathematics
Languages : en
Pages : 219
Book Description
Recent research has repeatedly led to connections between important rigidity questions and bounded cohomology. However, the latter has remained by and large intractable. This monograph introduces the functorial study of the continuous bounded cohomology for topological groups, with coefficients in Banach modules. The powerful techniques of this more general theory have successfully solved a number of the original problems in bounded cohomology. As applications, one obtains, in particular, rigidity results for actions on the circle, for representations on complex hyperbolic spaces and on Teichmüller spaces. A special effort has been made to provide detailed proofs or references in quite some generality.
Discrete Groups and Geometric Structures
Author: Karel Dekimpe
Publisher: American Mathematical Soc.
ISBN: 0821846477
Category : Mathematics
Languages : en
Pages : 162
Book Description
This volume reports on research related to Discrete Groups and Geometric Structures, as presented during the International Workshop held May 26-30, 2008, in Kortrijk, Belgium. Readers will benefit from impressive survey papers by John R. Parker on methods to construct and study lattices in complex hyperbolic space and by Ursula Hamenstadt on properties of group actions with a rank-one element on proper $\mathrm{CAT}(0)$-spaces. This volume also contains research papers in the area of group actions and geometric structures, including work on loops on a twice punctured torus, the simplicial volume of products and fiber bundles, the homology of Hantzsche-Wendt groups, rigidity of real Bott towers, circles in groups of smooth circle homeomorphisms, and groups generated by spine reflections admitting crooked fundamental domains.
Publisher: American Mathematical Soc.
ISBN: 0821846477
Category : Mathematics
Languages : en
Pages : 162
Book Description
This volume reports on research related to Discrete Groups and Geometric Structures, as presented during the International Workshop held May 26-30, 2008, in Kortrijk, Belgium. Readers will benefit from impressive survey papers by John R. Parker on methods to construct and study lattices in complex hyperbolic space and by Ursula Hamenstadt on properties of group actions with a rank-one element on proper $\mathrm{CAT}(0)$-spaces. This volume also contains research papers in the area of group actions and geometric structures, including work on loops on a twice punctured torus, the simplicial volume of products and fiber bundles, the homology of Hantzsche-Wendt groups, rigidity of real Bott towers, circles in groups of smooth circle homeomorphisms, and groups generated by spine reflections admitting crooked fundamental domains.
Combinatorial and Geometric Group Theory, Edinburgh 1993
Author: Andrew J. Duncan
Publisher: Cambridge University Press
ISBN: 9780521465953
Category : Mathematics
Languages : en
Pages : 340
Book Description
Authoritative collection of surveys and papers that will be indispensable to all research workers in the area.
Publisher: Cambridge University Press
ISBN: 9780521465953
Category : Mathematics
Languages : en
Pages : 340
Book Description
Authoritative collection of surveys and papers that will be indispensable to all research workers in the area.
Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups
Author: Armand Borel
Publisher: American Mathematical Soc.
ISBN: 147041225X
Category : Mathematics
Languages : en
Pages : 282
Book Description
It has been nearly twenty years since the first edition of this work. In the intervening years, there has been immense progress in the use of homological algebra to construct admissible representations and in the study of arithmetic groups. This second edition is a corrected and expanded version of the original, which was an important catalyst in the expansion of the field. Besides the fundamental material on cohomology and discrete subgroups present in the first edition, this edition also contains expositions of some of the most important developments of the last two decades.
Publisher: American Mathematical Soc.
ISBN: 147041225X
Category : Mathematics
Languages : en
Pages : 282
Book Description
It has been nearly twenty years since the first edition of this work. In the intervening years, there has been immense progress in the use of homological algebra to construct admissible representations and in the study of arithmetic groups. This second edition is a corrected and expanded version of the original, which was an important catalyst in the expansion of the field. Besides the fundamental material on cohomology and discrete subgroups present in the first edition, this edition also contains expositions of some of the most important developments of the last two decades.
Relative Bounded Cohomology and Relative L1 Homology
Author: HeeSook Park
Publisher:
ISBN:
Category : Algebraic topology
Languages : en
Pages : 222
Book Description
Publisher:
ISBN:
Category : Algebraic topology
Languages : en
Pages : 222
Book Description
An Invitation to Coarse Groups
Author: Arielle Leitner
Publisher: Springer Nature
ISBN: 3031427602
Category : Mathematics
Languages : en
Pages : 249
Book Description
This book lays the foundation for a theory of coarse groups: namely, sets with operations that satisfy the group axioms “up to uniformly bounded error”. These structures are the group objects in the category of coarse spaces, and arise naturally as approximate subgroups, or as coarse kernels. The first aim is to provide a standard entry-level introduction to coarse groups. Extra care has been taken to give a detailed, self-contained and accessible account of the theory. The second aim is to quickly bring the reader to the forefront of research. This is easily accomplished, as the subject is still young, and even basic questions remain unanswered. Reflecting its dual purpose, the book is divided into two parts. The first part covers the fundamentals of coarse groups and their actions. Here the theory of coarse homomorphisms, quotients and subgroups is developed, with proofs of coarse versions of the isomorphism theorems, and it is shown how coarse actions are related to fundamental aspects of geometric group theory. The second part, which is less self-contained, is an invitation to further research, where each thread leads to open questions of varying depth and difficulty. Among other topics, it explores coarse group structures on set-groups, groups of coarse automorphisms and spaces of controlled maps. The main focus is on connections between the theory of coarse groups and classical subjects, including: number theory; the study of bi-invariant metrics on groups; quasimorphisms and stable commutator length; groups of outer automorphisms; and topological groups and their actions. The book will primarily be of interest to researchers and graduate students in geometric group theory, topology, category theory and functional analysis, but some parts will also be accessible to advanced undergraduates.
Publisher: Springer Nature
ISBN: 3031427602
Category : Mathematics
Languages : en
Pages : 249
Book Description
This book lays the foundation for a theory of coarse groups: namely, sets with operations that satisfy the group axioms “up to uniformly bounded error”. These structures are the group objects in the category of coarse spaces, and arise naturally as approximate subgroups, or as coarse kernels. The first aim is to provide a standard entry-level introduction to coarse groups. Extra care has been taken to give a detailed, self-contained and accessible account of the theory. The second aim is to quickly bring the reader to the forefront of research. This is easily accomplished, as the subject is still young, and even basic questions remain unanswered. Reflecting its dual purpose, the book is divided into two parts. The first part covers the fundamentals of coarse groups and their actions. Here the theory of coarse homomorphisms, quotients and subgroups is developed, with proofs of coarse versions of the isomorphism theorems, and it is shown how coarse actions are related to fundamental aspects of geometric group theory. The second part, which is less self-contained, is an invitation to further research, where each thread leads to open questions of varying depth and difficulty. Among other topics, it explores coarse group structures on set-groups, groups of coarse automorphisms and spaces of controlled maps. The main focus is on connections between the theory of coarse groups and classical subjects, including: number theory; the study of bi-invariant metrics on groups; quasimorphisms and stable commutator length; groups of outer automorphisms; and topological groups and their actions. The book will primarily be of interest to researchers and graduate students in geometric group theory, topology, category theory and functional analysis, but some parts will also be accessible to advanced undergraduates.
Discrete Geometric Analysis
Author: Motoko Kotani
Publisher: American Mathematical Soc.
ISBN: 0821833510
Category : Mathematics
Languages : en
Pages : 274
Book Description
Collects papers from the proceedings of the first symposium of the Japan Association for Mathematical Sciences. This book covers topics that center around problems of geometric analysis in relation to heat kernels, random walks, and Poisson boundaries on discrete groups, graphs, and other combinatorial objects.
Publisher: American Mathematical Soc.
ISBN: 0821833510
Category : Mathematics
Languages : en
Pages : 274
Book Description
Collects papers from the proceedings of the first symposium of the Japan Association for Mathematical Sciences. This book covers topics that center around problems of geometric analysis in relation to heat kernels, random walks, and Poisson boundaries on discrete groups, graphs, and other combinatorial objects.
Perspectives In Scalar Curvature (In 2 Volumes)
Author: Mikhail L Gromov
Publisher: World Scientific
ISBN: 9811249377
Category : Mathematics
Languages : en
Pages : 1635
Book Description
Volume I contains a long article by Misha Gromov based on his many years of involvement in this subject. It came from lectures delivered in Spring 2019 at IHES. There is some background given. Many topics in the field are presented, and many open problems are discussed. One intriguing point here is the crucial role played by two seemingly unrelated analytic means: index theory of Dirac operators and geometric measure theory.Very recently there have been some real breakthroughs in the field. Volume I has several survey articles written by people who were responsible for these results.For Volume II, many people in areas of mathematics and physics, whose work is somehow related to scalar curvature, were asked to write about this in any way they pleased. This gives rise to a wonderful collection of articles, some with very broad and historical views, others which discussed specific fascinating subjects.These two books give a rich and powerful view of one of geometry's very appealing sides.
Publisher: World Scientific
ISBN: 9811249377
Category : Mathematics
Languages : en
Pages : 1635
Book Description
Volume I contains a long article by Misha Gromov based on his many years of involvement in this subject. It came from lectures delivered in Spring 2019 at IHES. There is some background given. Many topics in the field are presented, and many open problems are discussed. One intriguing point here is the crucial role played by two seemingly unrelated analytic means: index theory of Dirac operators and geometric measure theory.Very recently there have been some real breakthroughs in the field. Volume I has several survey articles written by people who were responsible for these results.For Volume II, many people in areas of mathematics and physics, whose work is somehow related to scalar curvature, were asked to write about this in any way they pleased. This gives rise to a wonderful collection of articles, some with very broad and historical views, others which discussed specific fascinating subjects.These two books give a rich and powerful view of one of geometry's very appealing sides.
Computational Aspects of Discrete Subgroups of Lie Groups
Author: Alla Detinko
Publisher: American Mathematical Society
ISBN: 1470468042
Category : Mathematics
Languages : en
Pages : 164
Book Description
This volume contains the proceedings of the virtual workshop on Computational Aspects of Discrete Subgroups of Lie Groups, held from June 14 to June 18, 2021, and hosted by the Institute for Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island. The major theme deals with a novel domain of computational algebra: the design, implementation, and application of algorithms based on matrix representation of groups and their geometric properties. It is centered on computing with discrete subgroups of Lie groups, which impacts many different areas of mathematics such as algebra, geometry, topology, and number theory. The workshop aimed to synergize independent strands in the area of computing with discrete subgroups of Lie groups, to facilitate solution of theoretical problems by means of recent advances in computational algebra.
Publisher: American Mathematical Society
ISBN: 1470468042
Category : Mathematics
Languages : en
Pages : 164
Book Description
This volume contains the proceedings of the virtual workshop on Computational Aspects of Discrete Subgroups of Lie Groups, held from June 14 to June 18, 2021, and hosted by the Institute for Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island. The major theme deals with a novel domain of computational algebra: the design, implementation, and application of algorithms based on matrix representation of groups and their geometric properties. It is centered on computing with discrete subgroups of Lie groups, which impacts many different areas of mathematics such as algebra, geometry, topology, and number theory. The workshop aimed to synergize independent strands in the area of computing with discrete subgroups of Lie groups, to facilitate solution of theoretical problems by means of recent advances in computational algebra.