Boundary Value Problems and Hardy Spaces for Elliptic Systems with Block Structure

Boundary Value Problems and Hardy Spaces for Elliptic Systems with Block Structure PDF Author: Pascal Auscher
Publisher: Springer Nature
ISBN: 3031299736
Category : Mathematics
Languages : en
Pages : 310

Get Book Here

Book Description
In this monograph, for elliptic systems with block structure in the upper half-space and t-independent coefficients, the authors settle the study of boundary value problems by proving compatible well-posedness of Dirichlet, regularity and Neumann problems in optimal ranges of exponents. Prior to this work, only the two-dimensional situation was fully understood. In higher dimensions, partial results for existence in smaller ranges of exponents and for a subclass of such systems had been established. The presented uniqueness results are completely new, and the authors also elucidate optimal ranges for problems with fractional regularity data. The first part of the monograph, which can be read independently, provides optimal ranges of exponents for functional calculus and adapted Hardy spaces for the associated boundary operator. Methods use and improve, with new results, all the machinery developed over the last two decades to study such problems: the Kato square root estimates and Riesz transforms, Hardy spaces associated to operators, off-diagonal estimates, non-tangential estimates and square functions, and abstract layer potentials to replace fundamental solutions in the absence of local regularity of solutions.

Boundary Value Problems and Hardy Spaces for Elliptic Systems with Block Structure

Boundary Value Problems and Hardy Spaces for Elliptic Systems with Block Structure PDF Author: Pascal Auscher
Publisher: Springer Nature
ISBN: 3031299736
Category : Mathematics
Languages : en
Pages : 310

Get Book Here

Book Description
In this monograph, for elliptic systems with block structure in the upper half-space and t-independent coefficients, the authors settle the study of boundary value problems by proving compatible well-posedness of Dirichlet, regularity and Neumann problems in optimal ranges of exponents. Prior to this work, only the two-dimensional situation was fully understood. In higher dimensions, partial results for existence in smaller ranges of exponents and for a subclass of such systems had been established. The presented uniqueness results are completely new, and the authors also elucidate optimal ranges for problems with fractional regularity data. The first part of the monograph, which can be read independently, provides optimal ranges of exponents for functional calculus and adapted Hardy spaces for the associated boundary operator. Methods use and improve, with new results, all the machinery developed over the last two decades to study such problems: the Kato square root estimates and Riesz transforms, Hardy spaces associated to operators, off-diagonal estimates, non-tangential estimates and square functions, and abstract layer potentials to replace fundamental solutions in the absence of local regularity of solutions.

Boundary Value Problems and Hardy Spaces for Elliptic Systems with Block Structure

Boundary Value Problems and Hardy Spaces for Elliptic Systems with Block Structure PDF Author: Pascal Auscher
Publisher: Birkhäuser
ISBN: 9783031299759
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
In this monograph, for elliptic systems with block structure in the upper half-space and t-independent coefficients, the authors settle the study of boundary value problems by proving compatible well-posedness of Dirichlet, regularity and Neumann problems in optimal ranges of exponents. Prior to this work, only the two-dimensional situation was fully understood. In higher dimensions, partial results for existence in smaller ranges of exponents and for a subclass of such systems had been established. The presented uniqueness results are completely new, and the authors also elucidate optimal ranges for problems with fractional regularity data. The first part of the monograph, which can be read independently, provides optimal ranges of exponents for functional calculus and adapted Hardy spaces for the associated boundary operator. Methods use and improve, with new results, all the machinery developed over the last two decades to study such problems: the Kato square root estimates and Riesz transforms, Hardy spaces associated to operators, off-diagonal estimates, non-tangential estimates and square functions, and abstract layer potentials to replace fundamental solutions in the absence of local regularity of solutions.

Square Roots of Elliptic Systems in Locally Uniform Domains

Square Roots of Elliptic Systems in Locally Uniform Domains PDF Author: Sebastian Bechtel
Publisher: Springer Nature
ISBN: 3031637682
Category :
Languages : en
Pages : 191

Get Book Here

Book Description


Integro-Differential Elliptic Equations

Integro-Differential Elliptic Equations PDF Author: Xavier Fernández-Real
Publisher: Springer Nature
ISBN: 3031542428
Category : Differential equations, Elliptic
Languages : en
Pages : 409

Get Book Here

Book Description
Zusammenfassung: This monograph offers a self-contained introduction to the regularity theory for integro-differential elliptic equations, mostly developed in the 21st century. This class of equations finds relevance in fields such as analysis, probability theory, mathematical physics, and in several contexts in the applied sciences. The work gives a detailed presentation of all the necessary techniques, with a primary focus on the main ideas rather than on proving all the results in their greatest generality. The basic building blocks are presented first, with the study of the square root of the Laplacian, and weak solutions to linear equations. Subsequently, the theory of viscosity solutions to nonlinear equations is developed, and proofs are provided for the main known results in this context. The analysis finishes with the investigation of obstacle problems for integro-differential operators and establishes the regularity of solutions and free boundaries. A distinctive feature of this work lies in its presentation of nearly all covered material in a monographic format for the first time, and several proofs streamline, and often simplify, those in the original papers. Furthermore, various open problems are listed throughout the chapters

 PDF Author:
Publisher: Springer Nature
ISBN: 3031737377
Category :
Languages : en
Pages : 279

Get Book Here

Book Description


Mathematical Reviews

Mathematical Reviews PDF Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 1524

Get Book Here

Book Description


Bernoulli Free-Boundary Problems

Bernoulli Free-Boundary Problems PDF Author: Eugene Shargorodsky
Publisher: American Mathematical Soc.
ISBN: 0821841890
Category : Mathematics
Languages : en
Pages : 86

Get Book Here

Book Description
Questions of existence, multiplicity, and regularity of free boundaries for prescribed data need to be addressed and their solutions lead to nonlinear problems. In this paper an equivalence is established between Bernoulli free-boundary problems and a class of equations for real-valued functions of one real variable.

Physics Briefs

Physics Briefs PDF Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1354

Get Book Here

Book Description


Encyclopaedia of Mathematics

Encyclopaedia of Mathematics PDF Author: Michiel Hazewinkel
Publisher: Springer Science & Business Media
ISBN: 9401512795
Category : Mathematics
Languages : en
Pages : 639

Get Book Here

Book Description
This is the second supplementary volume to Kluwer's highly acclaimed eleven-volume Encyclopaedia of Mathematics. This additional volume contains nearly 500 new entries written by experts and covers developments and topics not included in the previous volumes. These entries are arranged alphabetically throughout and a detailed index is included. This supplementary volume enhances the existing eleven volumes, and together these twelve volumes represent the most authoritative, comprehensive and up-to-date Encyclopaedia of Mathematics available.

Elliptic Boundary Value Problems with Fractional Regularity Data

Elliptic Boundary Value Problems with Fractional Regularity Data PDF Author: Alex Amenta
Publisher: American Mathematical Soc.
ISBN: 1470442507
Category : Mathematics
Languages : en
Pages : 162

Get Book Here

Book Description
A co-publication of the AMS and Centre de Recherches Mathématiques In this monograph the authors study the well-posedness of boundary value problems of Dirichlet and Neumann type for elliptic systems on the upper half-space with coefficients independent of the transversal variable and with boundary data in fractional Hardy–Sobolev and Besov spaces. The authors use the so-called “first order approach” which uses minimal assumptions on the coefficients and thus allows for complex coefficients and for systems of equations. This self-contained exposition of the first order approach offers new results with detailed proofs in a clear and accessible way and will become a valuable reference for graduate students and researchers working in partial differential equations and harmonic analysis.