Boundary Behaviour of Conformal Maps

Boundary Behaviour of Conformal Maps PDF Author: Christian Pommerenke
Publisher: Springer Science & Business Media
ISBN: 3662027704
Category : Mathematics
Languages : en
Pages : 307

Get Book Here

Book Description
We study the boundary behaviour of a conformal map of the unit disk onto an arbitrary simply connected plane domain. A principal aim of the theory is to obtain a one-to-one correspondence between analytic properties of the function and geometrie properties of the domain. In the classical applications of conformal mapping, the domain is bounded by a piecewise smooth curve. In many recent applications however, the domain has a very bad boundary. It may have nowhere a tangent as is the case for Julia sets. Then the conformal map has many unexpected properties, for instance almost all the boundary is mapped onto almost nothing and vice versa. The book is meant for two groups of users. (1) Graduate students and others who, at various levels, want to learn about conformal mapping. Most sections contain exercises to test the understand ing. They tend to be fairly simple and only a few contain new material. Pre requisites are general real and complex analyis including the basic facts about conformal mapping (e.g. AhI66a). (2) Non-experts who want to get an idea of a particular aspect of confor mal mapping in order to find something useful for their work. Most chapters therefore begin with an overview that states some key results avoiding tech nicalities. The book is not meant as an exhaustive survey of conformal mapping. Several important aspects had to be omitted, e.g. numerical methods (see e.g.

Boundary Behaviour of Conformal Maps

Boundary Behaviour of Conformal Maps PDF Author: Christian Pommerenke
Publisher: Springer Science & Business Media
ISBN: 3662027704
Category : Mathematics
Languages : en
Pages : 307

Get Book Here

Book Description
We study the boundary behaviour of a conformal map of the unit disk onto an arbitrary simply connected plane domain. A principal aim of the theory is to obtain a one-to-one correspondence between analytic properties of the function and geometrie properties of the domain. In the classical applications of conformal mapping, the domain is bounded by a piecewise smooth curve. In many recent applications however, the domain has a very bad boundary. It may have nowhere a tangent as is the case for Julia sets. Then the conformal map has many unexpected properties, for instance almost all the boundary is mapped onto almost nothing and vice versa. The book is meant for two groups of users. (1) Graduate students and others who, at various levels, want to learn about conformal mapping. Most sections contain exercises to test the understand ing. They tend to be fairly simple and only a few contain new material. Pre requisites are general real and complex analyis including the basic facts about conformal mapping (e.g. AhI66a). (2) Non-experts who want to get an idea of a particular aspect of confor mal mapping in order to find something useful for their work. Most chapters therefore begin with an overview that states some key results avoiding tech nicalities. The book is not meant as an exhaustive survey of conformal mapping. Several important aspects had to be omitted, e.g. numerical methods (see e.g.

Boundary Behaviour of Conformal Maps

Boundary Behaviour of Conformal Maps PDF Author: C. Pommerenke
Publisher:
ISBN: 9783527547517
Category :
Languages : en
Pages :

Get Book Here

Book Description


Conformal Maps And Geometry

Conformal Maps And Geometry PDF Author: Dmitry Beliaev
Publisher: World Scientific
ISBN: 178634615X
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
'I very much enjoyed reading this book … Each chapter comes with well thought-out exercises, solutions to which are given at the end of the chapter. Conformal Maps and Geometry presents key topics in geometric function theory and the theory of univalent functions, and also prepares the reader to progress to study the SLE. It succeeds admirably on both counts.'MathSciNetGeometric function theory is one of the most interesting parts of complex analysis, an area that has become increasingly relevant as a key feature in the theory of Schramm-Loewner evolution.Though Riemann mapping theorem is frequently explored, there are few texts that discuss general theory of univalent maps, conformal invariants, and Loewner evolution. This textbook provides an accessible foundation of the theory of conformal maps and their connections with geometry.It offers a unique view of the field, as it is one of the first to discuss general theory of univalent maps at a graduate level, while introducing more complex theories of conformal invariants and extremal lengths. Conformal Maps and Geometry is an ideal resource for graduate courses in Complex Analysis or as an analytic prerequisite to study the theory of Schramm-Loewner evolution.

Handbook of Conformal Mappings and Applications

Handbook of Conformal Mappings and Applications PDF Author: Prem K. Kythe
Publisher: CRC Press
ISBN: 135171872X
Category : Mathematics
Languages : en
Pages : 841

Get Book Here

Book Description
The subject of conformal mappings is a major part of geometric function theory that gained prominence after the publication of the Riemann mapping theorem — for every simply connected domain of the extended complex plane there is a univalent and meromorphic function that maps such a domain conformally onto the unit disk. The Handbook of Conformal Mappings and Applications is a compendium of at least all known conformal maps to date, with diagrams and description, and all possible applications in different scientific disciplines, such as: fluid flows, heat transfer, acoustics, electromagnetic fields as static fields in electricity and magnetism, various mathematical models and methods, including solutions of certain integral equations.

Handbook of Complex Analysis

Handbook of Complex Analysis PDF Author: Reiner Kuhnau
Publisher: Elsevier
ISBN: 0080495176
Category : Mathematics
Languages : en
Pages : 876

Get Book Here

Book Description
Geometric Function Theory is that part of Complex Analysis which covers the theory of conformal and quasiconformal mappings. Beginning with the classical Riemann mapping theorem, there is a lot of existence theorems for canonical conformal mappings. On the other side there is an extensive theory of qualitative properties of conformal and quasiconformal mappings, concerning mainly a prior estimates, so called distortion theorems (including the Bieberbach conjecture with the proof of the Branges). Here a starting point was the classical Scharz lemma, and then Koebe's distortion theorem. There are several connections to mathematical physics, because of the relations to potential theory (in the plane). The Handbook of Geometric Function Theory contains also an article about constructive methods and further a Bibliography including applications eg: to electroxtatic problems, heat conduction, potential flows (in the plane). · A collection of independent survey articles in the field of GeometricFunction Theory · Existence theorems and qualitative properties of conformal and quasiconformal mappings · A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane).

Moduli of Families of Curves for Conformal and Quasiconformal Mappings

Moduli of Families of Curves for Conformal and Quasiconformal Mappings PDF Author: Alexander Vasil'ev
Publisher: Springer
ISBN: 3540454373
Category : Mathematics
Languages : en
Pages : 222

Get Book Here

Book Description
The monograph is concerned with the modulus of families of curves on Riemann surfaces and its applications to extremal problems for conformal, quasiconformal mappings, and the extension of the modulus onto Teichmüller spaces. The main part of the monograph deals with extremal problems for compact classes of univalent conformal and quasiconformal mappings. Many of them are grouped around two-point distortion theorems. Montel's functions and functions with fixed angular derivatives are also considered. The last portion of problems is directed to the extension of the modulus varying the complex structure of the underlying Riemann surface that sheds some new light on the metric problems of Teichmüller spaces.

Fractal Geometry and Stochastics

Fractal Geometry and Stochastics PDF Author: Christoph Bandt
Publisher: Birkhäuser
ISBN: 3034877552
Category : Mathematics
Languages : en
Pages : 250

Get Book Here

Book Description
Fractal geometry is a new and promising field for researchers from different disciplines such as mathematics, physics, chemistry, biology and medicine. It is used to model complicated natural and technical phenomena. The most convincing models contain an element of randomness so that the combination of fractal geometry and stochastics arises in between these two fields. It contains contributions by outstanding mathematicians and is meant to highlight the principal directions of research in the area. The contributors were the main speakers attending the conference "Fractal Geometry and Stochastics" held at Finsterbergen, Germany, in June 1994. This was the first international conference ever to be held on the topic. The book is addressed to mathematicians and other scientists who are interested in the mathematical theory concerning: • Fractal sets and measures • Iterated function systems • Random fractals • Fractals and dynamical systems, and • Harmonic analysis on fractals. The reader will be introduced to the most recent results in these subjects. Researchers and graduate students alike will benefit from the clear expositions.

Encyclopaedia of Mathematics, Supplement III

Encyclopaedia of Mathematics, Supplement III PDF Author: Michiel Hazewinkel
Publisher: Springer Science & Business Media
ISBN: 0306483734
Category : Mathematics
Languages : en
Pages : 564

Get Book Here

Book Description
This is the third supplementary volume to Kluwer's highly acclaimed twelve-volume Encyclopaedia of Mathematics. This additional volume contains nearly 500 new entries written by experts and covers developments and topics not included in the previous volumes. These entries are arranged alphabetically throughout and a detailed index is included. This supplementary volume enhances the existing twelve volumes, and together, these thirteen volumes represent the most authoritative, comprehensive and up-to-date Encyclopaedia of Mathematics available.

Conformally Invariant Metrics and Quasiconformal Mappings

Conformally Invariant Metrics and Quasiconformal Mappings PDF Author: Parisa Hariri
Publisher: Springer Nature
ISBN: 3030320685
Category : Mathematics
Languages : en
Pages : 504

Get Book Here

Book Description
This book is an introduction to the theory of quasiconformal and quasiregular mappings in the euclidean n-dimensional space, (where n is greater than 2). There are many ways to develop this theory as the literature shows. The authors' approach is based on the use of metrics, in particular conformally invariant metrics, which will have a key role throughout the whole book. The intended readership consists of mathematicians from beginning graduate students to researchers. The prerequisite requirements are modest: only some familiarity with basic ideas of real and complex analysis is expected.

Mathematics and Computing

Mathematics and Computing PDF Author: Debdas Ghosh
Publisher: Springer
ISBN: 9811300232
Category : Computers
Languages : en
Pages : 338

Get Book Here

Book Description
This book constitutes the proceedings of the 4th International Conference on Mathematics and Computing, ICMC 2018, held in Varanasi, India, in January 2018. The 29 papers presented in this volume were carefully reviewed and selected from 116 submissions. They are organized in topical sections on security and coding theory; computing; applied mathematics; pure mathematics.