Author: Richard J. Rossi
Publisher: John Wiley & Sons
ISBN: 1118030575
Category : Mathematics
Languages : en
Pages : 338
Book Description
A hands-on introduction to the tools needed for rigorous and theoretical mathematical reasoning Successfully addressing the frustration many students experience as they make the transition from computational mathematics to advanced calculus and algebraic structures, Theorems, Corollaries, Lemmas, and Methods of Proof equips students with the tools needed to succeed while providing a firm foundation in the axiomatic structure of modern mathematics. This essential book: Clearly explains the relationship between definitions, conjectures, theorems, corollaries, lemmas, and proofs Reinforces the foundations of calculus and algebra Explores how to use both a direct and indirect proof to prove a theorem Presents the basic properties of real numbers/li> Discusses how to use mathematical induction to prove a theorem Identifies the different types of theorems Explains how to write a clear and understandable proof Covers the basic structure of modern mathematics and the key components of modern mathematics A complete chapter is dedicated to the different methods of proof such as forward direct proofs, proof by contrapositive, proof by contradiction, mathematical induction, and existence proofs. In addition, the author has supplied many clear and detailed algorithms that outline these proofs. Theorems, Corollaries, Lemmas, and Methods of Proof uniquely introduces scratch work as an indispensable part of the proof process, encouraging students to use scratch work and creative thinking as the first steps in their attempt to prove a theorem. Once their scratch work successfully demonstrates the truth of the theorem, the proof can be written in a clear and concise fashion. The basic structure of modern mathematics is discussed, and each of the key components of modern mathematics is defined. Numerous exercises are included in each chapter, covering a wide range of topics with varied levels of difficulty. Intended as a main text for mathematics courses such as Methods of Proof, Transitions to Advanced Mathematics, and Foundations of Mathematics, the book may also be used as a supplementary textbook in junior- and senior-level courses on advanced calculus, real analysis, and modern algebra.
Theorems, Corollaries, Lemmas, and Methods of Proof
Author: Richard J. Rossi
Publisher: John Wiley & Sons
ISBN: 1118030575
Category : Mathematics
Languages : en
Pages : 338
Book Description
A hands-on introduction to the tools needed for rigorous and theoretical mathematical reasoning Successfully addressing the frustration many students experience as they make the transition from computational mathematics to advanced calculus and algebraic structures, Theorems, Corollaries, Lemmas, and Methods of Proof equips students with the tools needed to succeed while providing a firm foundation in the axiomatic structure of modern mathematics. This essential book: Clearly explains the relationship between definitions, conjectures, theorems, corollaries, lemmas, and proofs Reinforces the foundations of calculus and algebra Explores how to use both a direct and indirect proof to prove a theorem Presents the basic properties of real numbers/li> Discusses how to use mathematical induction to prove a theorem Identifies the different types of theorems Explains how to write a clear and understandable proof Covers the basic structure of modern mathematics and the key components of modern mathematics A complete chapter is dedicated to the different methods of proof such as forward direct proofs, proof by contrapositive, proof by contradiction, mathematical induction, and existence proofs. In addition, the author has supplied many clear and detailed algorithms that outline these proofs. Theorems, Corollaries, Lemmas, and Methods of Proof uniquely introduces scratch work as an indispensable part of the proof process, encouraging students to use scratch work and creative thinking as the first steps in their attempt to prove a theorem. Once their scratch work successfully demonstrates the truth of the theorem, the proof can be written in a clear and concise fashion. The basic structure of modern mathematics is discussed, and each of the key components of modern mathematics is defined. Numerous exercises are included in each chapter, covering a wide range of topics with varied levels of difficulty. Intended as a main text for mathematics courses such as Methods of Proof, Transitions to Advanced Mathematics, and Foundations of Mathematics, the book may also be used as a supplementary textbook in junior- and senior-level courses on advanced calculus, real analysis, and modern algebra.
Publisher: John Wiley & Sons
ISBN: 1118030575
Category : Mathematics
Languages : en
Pages : 338
Book Description
A hands-on introduction to the tools needed for rigorous and theoretical mathematical reasoning Successfully addressing the frustration many students experience as they make the transition from computational mathematics to advanced calculus and algebraic structures, Theorems, Corollaries, Lemmas, and Methods of Proof equips students with the tools needed to succeed while providing a firm foundation in the axiomatic structure of modern mathematics. This essential book: Clearly explains the relationship between definitions, conjectures, theorems, corollaries, lemmas, and proofs Reinforces the foundations of calculus and algebra Explores how to use both a direct and indirect proof to prove a theorem Presents the basic properties of real numbers/li> Discusses how to use mathematical induction to prove a theorem Identifies the different types of theorems Explains how to write a clear and understandable proof Covers the basic structure of modern mathematics and the key components of modern mathematics A complete chapter is dedicated to the different methods of proof such as forward direct proofs, proof by contrapositive, proof by contradiction, mathematical induction, and existence proofs. In addition, the author has supplied many clear and detailed algorithms that outline these proofs. Theorems, Corollaries, Lemmas, and Methods of Proof uniquely introduces scratch work as an indispensable part of the proof process, encouraging students to use scratch work and creative thinking as the first steps in their attempt to prove a theorem. Once their scratch work successfully demonstrates the truth of the theorem, the proof can be written in a clear and concise fashion. The basic structure of modern mathematics is discussed, and each of the key components of modern mathematics is defined. Numerous exercises are included in each chapter, covering a wide range of topics with varied levels of difficulty. Intended as a main text for mathematics courses such as Methods of Proof, Transitions to Advanced Mathematics, and Foundations of Mathematics, the book may also be used as a supplementary textbook in junior- and senior-level courses on advanced calculus, real analysis, and modern algebra.
Euclidean Geometry in Mathematical Olympiads
Author: Evan Chen
Publisher: American Mathematical Soc.
ISBN: 1470466201
Category : Education
Languages : en
Pages : 329
Book Description
This is a challenging problem-solving book in Euclidean geometry, assuming nothing of the reader other than a good deal of courage. Topics covered included cyclic quadrilaterals, power of a point, homothety, triangle centers; along the way the reader will meet such classical gems as the nine-point circle, the Simson line, the symmedian and the mixtilinear incircle, as well as the theorems of Euler, Ceva, Menelaus, and Pascal. Another part is dedicated to the use of complex numbers and barycentric coordinates, granting the reader both a traditional and computational viewpoint of the material. The final part consists of some more advanced topics, such as inversion in the plane, the cross ratio and projective transformations, and the theory of the complete quadrilateral. The exposition is friendly and relaxed, and accompanied by over 300 beautifully drawn figures. The emphasis of this book is placed squarely on the problems. Each chapter contains carefully chosen worked examples, which explain not only the solutions to the problems but also describe in close detail how one would invent the solution to begin with. The text contains a selection of 300 practice problems of varying difficulty from contests around the world, with extensive hints and selected solutions. This book is especially suitable for students preparing for national or international mathematical olympiads or for teachers looking for a text for an honor class.
Publisher: American Mathematical Soc.
ISBN: 1470466201
Category : Education
Languages : en
Pages : 329
Book Description
This is a challenging problem-solving book in Euclidean geometry, assuming nothing of the reader other than a good deal of courage. Topics covered included cyclic quadrilaterals, power of a point, homothety, triangle centers; along the way the reader will meet such classical gems as the nine-point circle, the Simson line, the symmedian and the mixtilinear incircle, as well as the theorems of Euler, Ceva, Menelaus, and Pascal. Another part is dedicated to the use of complex numbers and barycentric coordinates, granting the reader both a traditional and computational viewpoint of the material. The final part consists of some more advanced topics, such as inversion in the plane, the cross ratio and projective transformations, and the theory of the complete quadrilateral. The exposition is friendly and relaxed, and accompanied by over 300 beautifully drawn figures. The emphasis of this book is placed squarely on the problems. Each chapter contains carefully chosen worked examples, which explain not only the solutions to the problems but also describe in close detail how one would invent the solution to begin with. The text contains a selection of 300 practice problems of varying difficulty from contests around the world, with extensive hints and selected solutions. This book is especially suitable for students preparing for national or international mathematical olympiads or for teachers looking for a text for an honor class.
Little Medusa's Hair Do-Lemma
Author: Jennifer Buchet
Publisher: Spork
ISBN: 9781950169474
Category :
Languages : en
Pages : 32
Book Description
Little Medusa comes from a long line of snake-loving, serpentine-wearing Gorgons. When she receives her very first snake, Little Medusa discovers that having a snake slither and slide through her hair isn't so great after all. And to make matters more difficult, she begins questioning if she really wants to scare her friends to stone with her new forever friend. Using her imagination and heart, Little Medusa tries her best to please her family, her best-pet snake, and herself. Based on Greek Mythology, Little Medusa features Common Core Connections and explores the universal themes of following family tradition and staying true to oneself.
Publisher: Spork
ISBN: 9781950169474
Category :
Languages : en
Pages : 32
Book Description
Little Medusa comes from a long line of snake-loving, serpentine-wearing Gorgons. When she receives her very first snake, Little Medusa discovers that having a snake slither and slide through her hair isn't so great after all. And to make matters more difficult, she begins questioning if she really wants to scare her friends to stone with her new forever friend. Using her imagination and heart, Little Medusa tries her best to please her family, her best-pet snake, and herself. Based on Greek Mythology, Little Medusa features Common Core Connections and explores the universal themes of following family tradition and staying true to oneself.
The Works of Archimedes
Author: Archimedes Archimedes
Publisher: Legare Street Press
ISBN: 9781016714068
Category :
Languages : en
Pages : 0
Book Description
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Publisher: Legare Street Press
ISBN: 9781016714068
Category :
Languages : en
Pages : 0
Book Description
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
The Geometry of Domains in Space
Author: Steven G. Krantz
Publisher: Springer Science & Business Media
ISBN: 1461215749
Category : Mathematics
Languages : en
Pages : 311
Book Description
The analysis of Euclidean space is well-developed. The classical Lie groups that act naturally on Euclidean space-the rotations, dilations, and trans lations-have both shaped and guided this development. In particular, the Fourier transform and the theory of translation invariant operators (convolution transforms) have played a central role in this analysis. Much modern work in analysis takes place on a domain in space. In this context the tools, perforce, must be different. No longer can we expect there to be symmetries. Correspondingly, there is no longer any natural way to apply the Fourier transform. Pseudodifferential operators and Fourier integral operators can playa role in solving some of the problems, but other problems require new, more geometric, ideas. At a more basic level, the analysis of a smoothly bounded domain in space requires a great deal of preliminary spadework. Tubular neighbor hoods, the second fundamental form, the notion of "positive reach", and the implicit function theorem are just some of the tools that need to be invoked regularly to set up this analysis. The normal and tangent bundles become part of the language of classical analysis when that analysis is done on a domain. Many of the ideas in partial differential equations-such as Egorov's canonical transformation theorem-become rather natural when viewed in geometric language. Many of the questions that are natural to an analyst-such as extension theorems for various classes of functions-are most naturally formulated using ideas from geometry.
Publisher: Springer Science & Business Media
ISBN: 1461215749
Category : Mathematics
Languages : en
Pages : 311
Book Description
The analysis of Euclidean space is well-developed. The classical Lie groups that act naturally on Euclidean space-the rotations, dilations, and trans lations-have both shaped and guided this development. In particular, the Fourier transform and the theory of translation invariant operators (convolution transforms) have played a central role in this analysis. Much modern work in analysis takes place on a domain in space. In this context the tools, perforce, must be different. No longer can we expect there to be symmetries. Correspondingly, there is no longer any natural way to apply the Fourier transform. Pseudodifferential operators and Fourier integral operators can playa role in solving some of the problems, but other problems require new, more geometric, ideas. At a more basic level, the analysis of a smoothly bounded domain in space requires a great deal of preliminary spadework. Tubular neighbor hoods, the second fundamental form, the notion of "positive reach", and the implicit function theorem are just some of the tools that need to be invoked regularly to set up this analysis. The normal and tangent bundles become part of the language of classical analysis when that analysis is done on a domain. Many of the ideas in partial differential equations-such as Egorov's canonical transformation theorem-become rather natural when viewed in geometric language. Many of the questions that are natural to an analyst-such as extension theorems for various classes of functions-are most naturally formulated using ideas from geometry.
Medieval Science, Technology, and Medicine
Author: Thomas F. Glick
Publisher: Psychology Press
ISBN: 9780415969307
Category : History
Languages : en
Pages : 632
Book Description
Demonstrates that the millennium from the fall of the Roman Empire to the flowering of the Renaissance was a period of great intellectual and practical achievement and innovation. This reference work will be useful to scholars, students, and general readers researching topics in many fields of study, including medieval studies and world history.
Publisher: Psychology Press
ISBN: 9780415969307
Category : History
Languages : en
Pages : 632
Book Description
Demonstrates that the millennium from the fall of the Roman Empire to the flowering of the Renaissance was a period of great intellectual and practical achievement and innovation. This reference work will be useful to scholars, students, and general readers researching topics in many fields of study, including medieval studies and world history.
The Book of Traces
Author: Volker Diekert
Publisher: World Scientific
ISBN: 9789810220587
Category : Computers
Languages : en
Pages : 596
Book Description
The theory of traces employs techniques and tackles problems from quite diverse areas which include formal language theory, combinatorics, graph theory, algebra, logic, and the theory of concurrent systems. In all these areas the theory of traces has led to interesting problems and significant results. It has made an especially big impact in formal language theory and the theory of concurrent systems. In both these disciplines it is a well-recognized and dynamic research area. Within formal language theory it yields the theory of partially commutative monoids, and provides an important connection between languages and graphs. Within the theory of concurrent systems it provides an important formal framework for the analysis and synthesis of concurrent systems.This monograph covers all important research lines of the theory of traces; each chapter is devoted to one research line and is written by leading experts. The book is organized in such a way that each chapter can be read independently ? and hence it is very suitable for advanced courses or seminars on formal language theory, the theory of concurrent systems, the theory of semigroups, and combinatorics. An extensive bibliography is included. At present, there is no other book of this type on trace theory.
Publisher: World Scientific
ISBN: 9789810220587
Category : Computers
Languages : en
Pages : 596
Book Description
The theory of traces employs techniques and tackles problems from quite diverse areas which include formal language theory, combinatorics, graph theory, algebra, logic, and the theory of concurrent systems. In all these areas the theory of traces has led to interesting problems and significant results. It has made an especially big impact in formal language theory and the theory of concurrent systems. In both these disciplines it is a well-recognized and dynamic research area. Within formal language theory it yields the theory of partially commutative monoids, and provides an important connection between languages and graphs. Within the theory of concurrent systems it provides an important formal framework for the analysis and synthesis of concurrent systems.This monograph covers all important research lines of the theory of traces; each chapter is devoted to one research line and is written by leading experts. The book is organized in such a way that each chapter can be read independently ? and hence it is very suitable for advanced courses or seminars on formal language theory, the theory of concurrent systems, the theory of semigroups, and combinatorics. An extensive bibliography is included. At present, there is no other book of this type on trace theory.
Lemmas in Olympiad Geometry
Author: Titu Andreescu
Publisher:
ISBN: 9780988562233
Category : Geometry
Languages : en
Pages : 0
Book Description
This book showcases the synthetic problem-solving methods which frequently appear in modern day Olympiad geometry, in the way we believe they should be taught to someone with little familiarity in the subject. In some sense, the text also represents an unofficial sequel to the recent problem collection published by XYZ Press, 110 Geometry Problems for the International Mathematical Olympiad, written by the first and third authors, but the two books can be studied completely independently of each other. The work is designed as a medley of the important Lemmas in classical geometry in a relatively linear fashion: gradually starting from Power of a Point and common results to more sophisticated topics, where knowing a lot of techniques can prove to be tremendously useful. We treat each chapter as a short story of its own and include numerous solved exercises with detailed explanations and related insights that will hopefully make your journey very enjoyable.
Publisher:
ISBN: 9780988562233
Category : Geometry
Languages : en
Pages : 0
Book Description
This book showcases the synthetic problem-solving methods which frequently appear in modern day Olympiad geometry, in the way we believe they should be taught to someone with little familiarity in the subject. In some sense, the text also represents an unofficial sequel to the recent problem collection published by XYZ Press, 110 Geometry Problems for the International Mathematical Olympiad, written by the first and third authors, but the two books can be studied completely independently of each other. The work is designed as a medley of the important Lemmas in classical geometry in a relatively linear fashion: gradually starting from Power of a Point and common results to more sophisticated topics, where knowing a lot of techniques can prove to be tremendously useful. We treat each chapter as a short story of its own and include numerous solved exercises with detailed explanations and related insights that will hopefully make your journey very enjoyable.
Manifolds and Differential Geometry
Author: Jeffrey Marc Lee
Publisher: American Mathematical Soc.
ISBN: 0821848151
Category : Mathematics
Languages : en
Pages : 690
Book Description
Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry. It includes the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, and de Rham cohomology.
Publisher: American Mathematical Soc.
ISBN: 0821848151
Category : Mathematics
Languages : en
Pages : 690
Book Description
Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry. It includes the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, and de Rham cohomology.
Euclid's Elements
Author: Euclid
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 544
Book Description
"The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary" --from book jacket.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 544
Book Description
"The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary" --from book jacket.