Birth of a Theorem

Birth of a Theorem PDF Author: Cédric Villani
Publisher: Macmillan + ORM
ISBN: 0374710236
Category : Biography & Autobiography
Languages : en
Pages : 260

Get Book Here

Book Description
In 2010, French mathematician Cédric Villani received the Fields Medal, the most coveted prize in mathematics, in recognition of a proof which he devised with his close collaborator Clément Mouhot to explain one of the most surprising theories in classical physics. Birth of aTheorem is Villani's own account of the years leading up to the award. It invites readers inside the mind of a great mathematician as he wrestles with the most important work of his career. But you don't have to understand nonlinear Landau damping to love Birth of aTheorem. It doesn't simplify or overexplain; rather, it invites readers into collaboration. Villani's diaries, emails, and musings enmesh you in the process of discovery. You join him in unproductive lulls and late-night breakthroughs. You're privy to the dining-hall conversations at the world's greatest research institutions. Villani shares his favorite songs, his love of manga, and the imaginative stories he tells his children. In mathematics, as in any creative work, it is the thinker's whole life that propels discovery—and with Birth of aTheorem, Cédric Villani welcomes you into his.

The Birth of Model Theory

The Birth of Model Theory PDF Author: Calixto Badesa
Publisher: Princeton University Press
ISBN: 1400826187
Category : Mathematics
Languages : en
Pages : 256

Get Book Here

Book Description
Löwenheim's theorem reflects a critical point in the history of mathematical logic, for it marks the birth of model theory--that is, the part of logic that concerns the relationship between formal theories and their models. However, while the original proofs of other, comparably significant theorems are well understood, this is not the case with Löwenheim's theorem. For example, the very result that scholars attribute to Löwenheim today is not the one that Skolem--a logician raised in the algebraic tradition, like Löwenheim--appears to have attributed to him. In The Birth of Model Theory, Calixto Badesa provides both the first sustained, book-length analysis of Löwenheim's proof and a detailed description of the theoretical framework--and, in particular, of the algebraic tradition--that made the theorem possible. Badesa's three main conclusions amount to a completely new interpretation of the proof, one that sharply contradicts the core of modern scholarship on the topic. First, Löwenheim did not use an infinitary language to prove his theorem; second, the functional interpretation of Löwenheim's normal form is anachronistic, and inappropriate for reconstructing the proof; and third, Löwenheim did not aim to prove the theorem's weakest version but the stronger version Skolem attributed to him. This book will be of considerable interest to historians of logic, logicians, philosophers of logic, and philosophers of mathematics.

Euler's Gem

Euler's Gem PDF Author: David S. Richeson
Publisher: Princeton University Press
ISBN: 0691191999
Category : Mathematics
Languages : en
Pages : 336

Get Book Here

Book Description
How a simple equation reshaped mathematics Leonhard Euler’s polyhedron formula describes the structure of many objects—from soccer balls and gemstones to Buckminster Fuller’s buildings and giant all-carbon molecules. Yet Euler’s theorem is so simple it can be explained to a child. From ancient Greek geometry to today’s cutting-edge research, Euler’s Gem celebrates the discovery of Euler’s beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. Using wonderful examples and numerous illustrations, David Richeson presents this mathematical idea’s many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who’s who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem’s development, Euler’s Gem will fascinate every mathematics enthusiast. This paperback edition contains a new preface by the author.

The Mathematical Coloring Book

The Mathematical Coloring Book PDF Author: Alexander Soifer
Publisher: Springer Science & Business Media
ISBN: 0387746420
Category : Mathematics
Languages : en
Pages : 619

Get Book Here

Book Description
This book provides an exciting history of the discovery of Ramsey Theory, and contains new research along with rare photographs of the mathematicians who developed this theory, including Paul Erdös, B.L. van der Waerden, and Henry Baudet.

The Birth of Mathematics

The Birth of Mathematics PDF Author: Michael J. Bradley
Publisher: Infobase Publishing
ISBN: 0791097234
Category : Mathematicians
Languages : en
Pages : 161

Get Book Here

Book Description


Morse Theory and Floer Homology

Morse Theory and Floer Homology PDF Author: Michèle Audin
Publisher: Springer Science & Business Media
ISBN: 1447154967
Category : Mathematics
Languages : en
Pages : 595

Get Book Here

Book Description
This book is an introduction to modern methods of symplectic topology. It is devoted to explaining the solution of an important problem originating from classical mechanics: the 'Arnold conjecture', which asserts that the number of 1-periodic trajectories of a non-degenerate Hamiltonian system is bounded below by the dimension of the homology of the underlying manifold. The first part is a thorough introduction to Morse theory, a fundamental tool of differential topology. It defines the Morse complex and the Morse homology, and develops some of their applications. Morse homology also serves a simple model for Floer homology, which is covered in the second part. Floer homology is an infinite-dimensional analogue of Morse homology. Its involvement has been crucial in the recent achievements in symplectic geometry and in particular in the proof of the Arnold conjecture. The building blocks of Floer homology are more intricate and imply the use of more sophisticated analytical methods, all of which are explained in this second part. The three appendices present a few prerequisites in differential geometry, algebraic topology and analysis. The book originated in a graduate course given at Strasbourg University, and contains a large range of figures and exercises. Morse Theory and Floer Homology will be particularly helpful for graduate and postgraduate students.

Unknown Quantity

Unknown Quantity PDF Author: John Derbyshire
Publisher: National Academies Press
ISBN: 030909657X
Category : Science
Languages : en
Pages : 391

Get Book Here

Book Description
Prime Obsession taught us not to be afraid to put the math in a math book. Unknown Quantity heeds the lesson well. So grab your graphing calculators, slip out the slide rules, and buckle up! John Derbyshire is introducing us to algebra through the ages-and it promises to be just what his die-hard fans have been waiting for. "Here is the story of algebra." With this deceptively simple introduction, we begin our journey. Flanked by formulae, shadowed by roots and radicals, escorted by an expert who navigates unerringly on our behalf, we are guaranteed safe passage through even the most treacherous mathematical terrain. Our first encounter with algebraic arithmetic takes us back 38 centuries to the time of Abraham and Isaac, Jacob and Joseph, Ur and Haran, Sodom and Gomorrah. Moving deftly from Abel's proof to the higher levels of abstraction developed by Galois, we are eventually introduced to what algebraists have been focusing on during the last century. As we travel through the ages, it becomes apparent that the invention of algebra was more than the start of a specific discipline of mathematics-it was also the birth of a new way of thinking that clarified both basic numeric concepts as well as our perception of the world around us. Algebraists broke new ground when they discarded the simple search for solutions to equations and concentrated instead on abstract groups. This dramatic shift in thinking revolutionized mathematics. Written for those among us who are unencumbered by a fear of formulae, Unknown Quantity delivers on its promise to present a history of algebra. Astonishing in its bold presentation of the math and graced with narrative authority, our journey through the world of algebra is at once intellectually satisfying and pleasantly challenging.

Cauchy and the Creation of Complex Function Theory

Cauchy and the Creation of Complex Function Theory PDF Author: Frank Smithies
Publisher: Cambridge University Press
ISBN: 9780521592789
Category : Mathematics
Languages : en
Pages : 242

Get Book Here

Book Description
Dr Smithies' analysis of the process whereby Cauchy created the basic structure of complex analysis, begins by describing the 18th century background. He then proceeds to examine the stages of Cauchy's own work, culminating in the proof of the residue theorem. Controversies associated with the the birth of the subject are also considered in detail. Throughout, new light is thrown on Cauchy's thinking during this watershed period. This authoritative book is the first to make use of the whole spectrum of available original sources.

How Not to Be Wrong

How Not to Be Wrong PDF Author: Jordan Ellenberg
Publisher: Penguin
ISBN: 0143127535
Category : Mathematics
Languages : en
Pages : 482

Get Book Here

Book Description
“Witty, compelling, and just plain fun to read . . ." —Evelyn Lamb, Scientific American The Freakonomics of math—a math-world superstar unveils the hidden beauty and logic of the world and puts its power in our hands The math we learn in school can seem like a dull set of rules, laid down by the ancients and not to be questioned. In How Not to Be Wrong, Jordan Ellenberg shows us how terribly limiting this view is: Math isn’t confined to abstract incidents that never occur in real life, but rather touches everything we do—the whole world is shot through with it. Math allows us to see the hidden structures underneath the messy and chaotic surface of our world. It’s a science of not being wrong, hammered out by centuries of hard work and argument. Armed with the tools of mathematics, we can see through to the true meaning of information we take for granted: How early should you get to the airport? What does “public opinion” really represent? Why do tall parents have shorter children? Who really won Florida in 2000? And how likely are you, really, to develop cancer? How Not to Be Wrong presents the surprising revelations behind all of these questions and many more, using the mathematician’s method of analyzing life and exposing the hard-won insights of the academic community to the layman—minus the jargon. Ellenberg chases mathematical threads through a vast range of time and space, from the everyday to the cosmic, encountering, among other things, baseball, Reaganomics, daring lottery schemes, Voltaire, the replicability crisis in psychology, Italian Renaissance painting, artificial languages, the development of non-Euclidean geometry, the coming obesity apocalypse, Antonin Scalia’s views on crime and punishment, the psychology of slime molds, what Facebook can and can’t figure out about you, and the existence of God. Ellenberg pulls from history as well as from the latest theoretical developments to provide those not trained in math with the knowledge they need. Math, as Ellenberg says, is “an atomic-powered prosthesis that you attach to your common sense, vastly multiplying its reach and strength.” With the tools of mathematics in hand, you can understand the world in a deeper, more meaningful way. How Not to Be Wrong will show you how.

Applied Linear Algebra

Applied Linear Algebra PDF Author: Lorenzo Sadun
Publisher: American Mathematical Society
ISBN: 1470470047
Category : Mathematics
Languages : en
Pages : 392

Get Book Here

Book Description
Linear algebra permeates mathematics, as well as physics and engineering. In this text for junior and senior undergraduates, Sadun treats diagonalization as a central tool in solving complicated problems in these subjects by reducing coupled linear evolution problems to a sequence of simpler decoupled problems. This is the Decoupling Principle. Traditionally, difference equations, Markov chains, coupled oscillators, Fourier series, the wave equation, the Schrödinger equation, and Fourier transforms are treated separately, often in different courses. Here, they are treated as particular instances of the decoupling principle, and their solutions are remarkably similar. By understanding this general principle and the many applications given in the book, students will be able to recognize it and to apply it in many other settings. Sadun includes some topics relating to infinite-dimensional spaces. He does not present a general theory, but enough so as to apply the decoupling principle to the wave equation, leading to Fourier series and the Fourier transform. The second edition contains a series of Explorations. Most are numerical labs in which the reader is asked to use standard computer software to look deeper into the subject. Some explorations are theoretical, for instance, relating linear algebra to quantum mechanics. There is also an appendix reviewing basic matrix operations and another with solutions to a third of the exercises.