Author: Giuseppe Perale
Publisher: Woodhead Publishing
ISBN: 0081002661
Category : Technology & Engineering
Languages : en
Pages : 630
Book Description
Bioresorbable Polymers for Biomedical Applications: From Fundamentals to Translational Medicine provides readers with an overview of bioresorbable polymeric materials in the biomedical field. A useful resource for materials scientists in industry and academia, offering information on the fundamentals and considerations, synthesis and processing, and the clinical and R and D applications of bioresorbable polymers for biomedical applications. - Focuses on biomedical applications of bioresorbable polymers - Features a comprehensive range of topics including fundamentals, synthesis, processing, and applications - Provides balanced coverage of the field with contributions from academia and industry - Includes clinical and R and D applications of bioresorbable polymers for biomedical applications
Bioresorbable Polymers for Biomedical Applications
Author: Giuseppe Perale
Publisher: Woodhead Publishing
ISBN: 0081002661
Category : Technology & Engineering
Languages : en
Pages : 630
Book Description
Bioresorbable Polymers for Biomedical Applications: From Fundamentals to Translational Medicine provides readers with an overview of bioresorbable polymeric materials in the biomedical field. A useful resource for materials scientists in industry and academia, offering information on the fundamentals and considerations, synthesis and processing, and the clinical and R and D applications of bioresorbable polymers for biomedical applications. - Focuses on biomedical applications of bioresorbable polymers - Features a comprehensive range of topics including fundamentals, synthesis, processing, and applications - Provides balanced coverage of the field with contributions from academia and industry - Includes clinical and R and D applications of bioresorbable polymers for biomedical applications
Publisher: Woodhead Publishing
ISBN: 0081002661
Category : Technology & Engineering
Languages : en
Pages : 630
Book Description
Bioresorbable Polymers for Biomedical Applications: From Fundamentals to Translational Medicine provides readers with an overview of bioresorbable polymeric materials in the biomedical field. A useful resource for materials scientists in industry and academia, offering information on the fundamentals and considerations, synthesis and processing, and the clinical and R and D applications of bioresorbable polymers for biomedical applications. - Focuses on biomedical applications of bioresorbable polymers - Features a comprehensive range of topics including fundamentals, synthesis, processing, and applications - Provides balanced coverage of the field with contributions from academia and industry - Includes clinical and R and D applications of bioresorbable polymers for biomedical applications
Bioresorbable Polymers and their Biomedical Applications
Author: Declan M Devine
Publisher: Smithers Rapra
ISBN: 1911088092
Category : Science
Languages : en
Pages : 254
Book Description
Bioresorbable or biodegradable polymers are commonly used in various biomedical applications. The application of bioresorbable polymers in the biomedical sector has been widely exploited by immobilising suturing thread with an analgesic or antibacterial drugs, and the development of bioresorbable vascular scaffolds, wound-healing and intravenous drug-delivery devices. Furthermore, biodegradable polymers have been investigated as a replacement for metallic orthopaedic devices due to their precise control of material composition and microstructure. These polymers are eliminated from the body via dissolution, assimilation and excretion through metabolic pathways. The hydrolysing process breaks down the polymer into smaller units and its degradation products are excreted by means of the citric acid cycle or by direct renal excretion with no residual side effects.Processing of bioresorbable implants can be achieved via conventional polymer processing methods such as extrusion, injection and compressing moulding, solvent spinning or casting. However, special consideration must be given when processing these materials because heat can cause a reduction in molecular weight due to the hydrolysing of bonds. In addition, overheating can depolymerise the polymer and, as a result, monomers can have a plasticising effect on the polymer. Recently, alternative approaches utilising rapid prototyping and micro-/nanofabrication processes have been employed.This book addresses these issues and highlights recent advances in the biomedical field that have being enabled by the use of biodegradable polymers. This book is designed as a reference guide for academic researchers utilising biodegradable polymers in a range of areas from tissue engineering to controlled release of active pharmaceuticals, through to industry-based processors of biodegradable polymers.
Publisher: Smithers Rapra
ISBN: 1911088092
Category : Science
Languages : en
Pages : 254
Book Description
Bioresorbable or biodegradable polymers are commonly used in various biomedical applications. The application of bioresorbable polymers in the biomedical sector has been widely exploited by immobilising suturing thread with an analgesic or antibacterial drugs, and the development of bioresorbable vascular scaffolds, wound-healing and intravenous drug-delivery devices. Furthermore, biodegradable polymers have been investigated as a replacement for metallic orthopaedic devices due to their precise control of material composition and microstructure. These polymers are eliminated from the body via dissolution, assimilation and excretion through metabolic pathways. The hydrolysing process breaks down the polymer into smaller units and its degradation products are excreted by means of the citric acid cycle or by direct renal excretion with no residual side effects.Processing of bioresorbable implants can be achieved via conventional polymer processing methods such as extrusion, injection and compressing moulding, solvent spinning or casting. However, special consideration must be given when processing these materials because heat can cause a reduction in molecular weight due to the hydrolysing of bonds. In addition, overheating can depolymerise the polymer and, as a result, monomers can have a plasticising effect on the polymer. Recently, alternative approaches utilising rapid prototyping and micro-/nanofabrication processes have been employed.This book addresses these issues and highlights recent advances in the biomedical field that have being enabled by the use of biodegradable polymers. This book is designed as a reference guide for academic researchers utilising biodegradable polymers in a range of areas from tissue engineering to controlled release of active pharmaceuticals, through to industry-based processors of biodegradable polymers.
Bioresorbable Polymers
Author: Declan Devine
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110640570
Category : Medical
Languages : en
Pages : 152
Book Description
Bioresorbable implants can be processed via conventional polymer processing methods such as extrusion, injection and compressing moulding, solvent spinning or casting. This book addresses issues and highlights recent advances in the use of biodegradable polymers. It is intended for researchers utilizing biodegradable polymers in areas from tissue engineering to controlled release of active pharmaceuticals, as well as industrial processors.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110640570
Category : Medical
Languages : en
Pages : 152
Book Description
Bioresorbable implants can be processed via conventional polymer processing methods such as extrusion, injection and compressing moulding, solvent spinning or casting. This book addresses issues and highlights recent advances in the use of biodegradable polymers. It is intended for researchers utilizing biodegradable polymers in areas from tissue engineering to controlled release of active pharmaceuticals, as well as industrial processors.
Science and Principles of Biodegradable and Bioresorbable Medical Polymers
Author: Xiang Cheng Zhang
Publisher: Woodhead Publishing
ISBN: 0081003935
Category : Technology & Engineering
Languages : en
Pages : 478
Book Description
Science and Principles of Biodegradable and Bioresorbable Medical Polymers: Materials and Properties provides a practical guide to the use of biodegradable and bioresorbable polymers for study, research, and applications within medicine. Fundamentals of the basic principles and science behind the use of biodegradable polymers in advanced research and in medical and pharmaceutical applications are presented, as are important new concepts and principles covering materials, properties, and computer modeling, providing the reader with useful tools that will aid their own research, product design, and development. Supported by practical application examples, the scope and contents of the book provide researchers with an important reference and knowledge-based educational and training aid on the basics and fundamentals of these important medical polymers. - Provides a practical guide to the fundamentals, synthesis, and processing of bioresorbable polymers in medicine - Contains comprehensive coverage of material properties, including unique insights into modeling degradation - Written by an eclectic mix of international authors with experience in academia and industry
Publisher: Woodhead Publishing
ISBN: 0081003935
Category : Technology & Engineering
Languages : en
Pages : 478
Book Description
Science and Principles of Biodegradable and Bioresorbable Medical Polymers: Materials and Properties provides a practical guide to the use of biodegradable and bioresorbable polymers for study, research, and applications within medicine. Fundamentals of the basic principles and science behind the use of biodegradable polymers in advanced research and in medical and pharmaceutical applications are presented, as are important new concepts and principles covering materials, properties, and computer modeling, providing the reader with useful tools that will aid their own research, product design, and development. Supported by practical application examples, the scope and contents of the book provide researchers with an important reference and knowledge-based educational and training aid on the basics and fundamentals of these important medical polymers. - Provides a practical guide to the fundamentals, synthesis, and processing of bioresorbable polymers in medicine - Contains comprehensive coverage of material properties, including unique insights into modeling degradation - Written by an eclectic mix of international authors with experience in academia and industry
Natural-Based Polymers for Biomedical Applications
Author: Rui L. Reis
Publisher: Elsevier
ISBN: 1845694813
Category : Science
Languages : en
Pages : 829
Book Description
Polymers from natural sources are particularly useful as biomaterials and in regenerative medicine, given their similarity to the extracellular matrix and other polymers in the human body. This important book reviews the wealth of research on both tried and promising new natural-based biomedical polymers, together with their applications as implantable biomaterials, controlled-release carriers or scaffolds for tissue engineering.The first part of the book reviews the sources, processing and properties of natural-based polymers for biomedical applications. Part two describes how the surfaces of polymer-based biomaterials can be modified to improve their functionality. The third part of the book discusses the use of natural-based polymers for biodegradable scaffolds and hydrogels in tissue engineering. Building on this foundation, Part four looks at the particular use of natural-gelling polymers for encapsulation, tissue engineering and regenerative medicine. The penultimate group of chapters reviews the use of natural-based polymers as delivery systems for drugs, hormones, enzymes and growth factors. The final part of the book summarises research on the key issue of biocompatibility.Natural-based polymers for biomedical applications is a standard reference for biomedical engineers, those studying and researching in this important area, and the medical community. - Examines the sources, processing and properties of natural based polymers for biomedical applications - Explains how the surfaces of polymer based biomaterials can be modified to improve their functionality - Discusses the use of natural based polymers for hydrogels in tissue engineering, and in particular natural gelling polymers for encapsulation and regenerative medicine
Publisher: Elsevier
ISBN: 1845694813
Category : Science
Languages : en
Pages : 829
Book Description
Polymers from natural sources are particularly useful as biomaterials and in regenerative medicine, given their similarity to the extracellular matrix and other polymers in the human body. This important book reviews the wealth of research on both tried and promising new natural-based biomedical polymers, together with their applications as implantable biomaterials, controlled-release carriers or scaffolds for tissue engineering.The first part of the book reviews the sources, processing and properties of natural-based polymers for biomedical applications. Part two describes how the surfaces of polymer-based biomaterials can be modified to improve their functionality. The third part of the book discusses the use of natural-based polymers for biodegradable scaffolds and hydrogels in tissue engineering. Building on this foundation, Part four looks at the particular use of natural-gelling polymers for encapsulation, tissue engineering and regenerative medicine. The penultimate group of chapters reviews the use of natural-based polymers as delivery systems for drugs, hormones, enzymes and growth factors. The final part of the book summarises research on the key issue of biocompatibility.Natural-based polymers for biomedical applications is a standard reference for biomedical engineers, those studying and researching in this important area, and the medical community. - Examines the sources, processing and properties of natural based polymers for biomedical applications - Explains how the surfaces of polymer based biomaterials can be modified to improve their functionality - Discusses the use of natural based polymers for hydrogels in tissue engineering, and in particular natural gelling polymers for encapsulation and regenerative medicine
Biosynthetic Polymers for Medical Applications
Author: Laura Poole-Warren
Publisher: Elsevier
ISBN: 1782421130
Category : Technology & Engineering
Languages : en
Pages : 360
Book Description
Biosynthetic Polymers for Medical Applications provides the latest information on biopolymers, the polymers that have been produced from living organisms and are biodegradable in nature. These advanced materials are becoming increasingly important for medical applications due to their favorable properties, such as degradability and biocompatibility. This important book provides readers with a thorough review of the fundamentals of biosynthetic polymers and their applications. Part One covers the fundamentals of biosynthetic polymers for medical applications, while Part Two explores biosynthetic polymer coatings and surface modification. Subsequent sections discuss biosynthetic polymers for tissue engineering applications and how to conduct polymers for medical applications. - Comprehensively covers all major medical applications of biosynthetic polymers - Provides an overview of non-degradable and biodegradable biosynthetic polymers and their medical uses - Presents a specific focus on coatings and surface modifications, biosynthetic hydrogels, particulate systems for gene and drug delivery, and conjugated conducting polymers
Publisher: Elsevier
ISBN: 1782421130
Category : Technology & Engineering
Languages : en
Pages : 360
Book Description
Biosynthetic Polymers for Medical Applications provides the latest information on biopolymers, the polymers that have been produced from living organisms and are biodegradable in nature. These advanced materials are becoming increasingly important for medical applications due to their favorable properties, such as degradability and biocompatibility. This important book provides readers with a thorough review of the fundamentals of biosynthetic polymers and their applications. Part One covers the fundamentals of biosynthetic polymers for medical applications, while Part Two explores biosynthetic polymer coatings and surface modification. Subsequent sections discuss biosynthetic polymers for tissue engineering applications and how to conduct polymers for medical applications. - Comprehensively covers all major medical applications of biosynthetic polymers - Provides an overview of non-degradable and biodegradable biosynthetic polymers and their medical uses - Presents a specific focus on coatings and surface modifications, biosynthetic hydrogels, particulate systems for gene and drug delivery, and conjugated conducting polymers
Biodegradable and Biobased Polymers for Environmental and Biomedical Applications
Author: Susheel Kalia
Publisher: John Wiley & Sons
ISBN: 1119117356
Category : Technology & Engineering
Languages : en
Pages : 448
Book Description
This volume incorporates 13 contributions from renowned experts from the relevant research fields that are related biodegradable and biobased polymers and their environmental and biomedical applications. Specifically, the book highlights: Developments in polyhydroxyalkanoates applications in agriculture, biodegradable packaging material and biomedical field like drug delivery systems, implants, tissue engineering and scaffolds The synthesis and elaboration of cellulose microfibrils from sisal fibres for high performance engineering applications in various sectors such as the automotive and aerospace industries, or for building and construction The different classes and chemical modifications of tannins Electro-activity and applications of Jatropha latex and seed The synthesis, properties and applications of poly(lactic acid) The synthesis, processing and properties of poly(butylene succinate), its copolymers, composites and nanocomposites The different routes for preparation polymers from vegetable oil and the effects of reinforcement and nano-reinforcement on the physical properties of such biobased polymers The different types of modified drug delivery systems together with the concept of the drug delivery matrix for controlled release of drugs and for antitumor drugs The use of nanocellulose as sustainable adsorbents for the removal of water pollutants mainly heavy metal ions, organic molecules, dyes, oil and CO2 The main extraction techniques, structure, properties and different chemical modifications of lignins Proteins and nucleic acids based biopolymers The role of tamarind seed polysaccharide-based multiple-unit systems in sustained drug release
Publisher: John Wiley & Sons
ISBN: 1119117356
Category : Technology & Engineering
Languages : en
Pages : 448
Book Description
This volume incorporates 13 contributions from renowned experts from the relevant research fields that are related biodegradable and biobased polymers and their environmental and biomedical applications. Specifically, the book highlights: Developments in polyhydroxyalkanoates applications in agriculture, biodegradable packaging material and biomedical field like drug delivery systems, implants, tissue engineering and scaffolds The synthesis and elaboration of cellulose microfibrils from sisal fibres for high performance engineering applications in various sectors such as the automotive and aerospace industries, or for building and construction The different classes and chemical modifications of tannins Electro-activity and applications of Jatropha latex and seed The synthesis, properties and applications of poly(lactic acid) The synthesis, processing and properties of poly(butylene succinate), its copolymers, composites and nanocomposites The different routes for preparation polymers from vegetable oil and the effects of reinforcement and nano-reinforcement on the physical properties of such biobased polymers The different types of modified drug delivery systems together with the concept of the drug delivery matrix for controlled release of drugs and for antitumor drugs The use of nanocellulose as sustainable adsorbents for the removal of water pollutants mainly heavy metal ions, organic molecules, dyes, oil and CO2 The main extraction techniques, structure, properties and different chemical modifications of lignins Proteins and nucleic acids based biopolymers The role of tamarind seed polysaccharide-based multiple-unit systems in sustained drug release
Biodegradable Polymeric Nanocomposites
Author: Dilip Depan
Publisher: CRC Press
ISBN: 1482260522
Category : Medical
Languages : en
Pages : 266
Book Description
How Can Polymers Constructed From Living Organisms Help Eliminate the Disposal Issue? A unique category of materials called biodegradable polymers could help remedy a growing environmental concern. Biodegradable Polymeric Nanocomposites: Advances in Biomedical Applications considers the potential of biodegradable polymers for use in biomedical appl
Publisher: CRC Press
ISBN: 1482260522
Category : Medical
Languages : en
Pages : 266
Book Description
How Can Polymers Constructed From Living Organisms Help Eliminate the Disposal Issue? A unique category of materials called biodegradable polymers could help remedy a growing environmental concern. Biodegradable Polymeric Nanocomposites: Advances in Biomedical Applications considers the potential of biodegradable polymers for use in biomedical appl
Natural and Synthetic Biomedical Polymers
Author: Sangamesh G. Kum bar
Publisher: Newnes
ISBN: 0123972906
Category : Technology & Engineering
Languages : en
Pages : 421
Book Description
Polymers are important and attractive biomaterials for researchers and clinical applications due to the ease of tailoring their chemical, physical and biological properties for target devices. Due to this versatility they are rapidly replacing other classes of biomaterials such as ceramics or metals. As a result, the demand for biomedical polymers has grown exponentially and supports a diverse and highly monetized research community. Currently worth $1.2bn in 2009 (up from $650m in 2000), biomedical polymers are expected to achieve a CAGR of 9.8% until 2015, supporting a current research community of approximately 28,000+. Summarizing the main advances in biopolymer development of the last decades, this work systematically covers both the physical science and biomedical engineering of the multidisciplinary field. Coverage extends across synthesis, characterization, design consideration and biomedical applications. The work supports scientists researching the formulation of novel polymers with desirable physical, chemical, biological, biomechanical and degradation properties for specific targeted biomedical applications. - Combines chemistry, biology and engineering for expert and appropriate integration of design and engineering of polymeric biomaterials - Physical, chemical, biological, biomechanical and degradation properties alongside currently deployed clinical applications of specific biomaterials aids use as single source reference on field. - 15+ case studies provides in-depth analysis of currently used polymeric biomaterials, aiding design considerations for the future
Publisher: Newnes
ISBN: 0123972906
Category : Technology & Engineering
Languages : en
Pages : 421
Book Description
Polymers are important and attractive biomaterials for researchers and clinical applications due to the ease of tailoring their chemical, physical and biological properties for target devices. Due to this versatility they are rapidly replacing other classes of biomaterials such as ceramics or metals. As a result, the demand for biomedical polymers has grown exponentially and supports a diverse and highly monetized research community. Currently worth $1.2bn in 2009 (up from $650m in 2000), biomedical polymers are expected to achieve a CAGR of 9.8% until 2015, supporting a current research community of approximately 28,000+. Summarizing the main advances in biopolymer development of the last decades, this work systematically covers both the physical science and biomedical engineering of the multidisciplinary field. Coverage extends across synthesis, characterization, design consideration and biomedical applications. The work supports scientists researching the formulation of novel polymers with desirable physical, chemical, biological, biomechanical and degradation properties for specific targeted biomedical applications. - Combines chemistry, biology and engineering for expert and appropriate integration of design and engineering of polymeric biomaterials - Physical, chemical, biological, biomechanical and degradation properties alongside currently deployed clinical applications of specific biomaterials aids use as single source reference on field. - 15+ case studies provides in-depth analysis of currently used polymeric biomaterials, aiding design considerations for the future
Biodegradable Polyesters
Author: Stoyko Fakirov
Publisher: John Wiley & Sons
ISBN: 3527656979
Category : Technology & Engineering
Languages : en
Pages : 370
Book Description
Collating otherwise hard-to-get and recently acquired knowledge in one work, this is a comprehensive reference on the synthesis, properties, characterization, and applications of this eco-friendly class of plastics. A group of internationally renowned researchers offer their first-hand experience and knowledge, dealing exclusively with those biodegradable polyesters that have become increasingly important over the past two decades due to environmental concerns on the one hand and newly-devised applications in the biomedical field on the other. The result is an unparalleled overview for the industrial chemist and materials scientist, as well as for developers and researchers in industry and academia alike.
Publisher: John Wiley & Sons
ISBN: 3527656979
Category : Technology & Engineering
Languages : en
Pages : 370
Book Description
Collating otherwise hard-to-get and recently acquired knowledge in one work, this is a comprehensive reference on the synthesis, properties, characterization, and applications of this eco-friendly class of plastics. A group of internationally renowned researchers offer their first-hand experience and knowledge, dealing exclusively with those biodegradable polyesters that have become increasingly important over the past two decades due to environmental concerns on the one hand and newly-devised applications in the biomedical field on the other. The result is an unparalleled overview for the industrial chemist and materials scientist, as well as for developers and researchers in industry and academia alike.