Author: Vijai G. Gupta
Publisher: Newnes
ISBN: 0444595643
Category : Technology & Engineering
Languages : en
Pages : 513
Book Description
Bioenergy Research: Advances and Applications brings biology and engineering together to address the challenges of future energy needs. The book consolidates the most recent research on current technologies, concepts, and commercial developments in various types of widely used biofuels and integrated biorefineries, across the disciplines of biochemistry, biotechnology, phytology, and microbiology. All the chapters in the book are derived from international scientific experts in their respective research areas. They provide you with clear and concise information on both standard and more recent bioenergy production methods, including hydrolysis and microbial fermentation. Chapters are also designed to facilitate early stage researchers, and enables you to easily grasp the concepts, methodologies and application of bioenergy technologies. Each chapter in the book describes the merits and drawbacks of each technology as well as its usefulness. The book provides information on recent approaches to graduates, post-graduates, researchers and practitioners studying and working in field of the bioenergy. It is an invaluable information resource on biomass-based biofuels for fundamental and applied research, catering to researchers in the areas of bio-hydrogen, bioethanol, bio-methane and biorefineries, and the use of microbial processes in the conversion of biomass into biofuels. - Reviews all existing and promising technologies for production of advanced biofuels in addition to bioenergy policies and research funding - Cutting-edge research concepts for biofuels production using biological and biochemical routes, including microbial fuel cells - Includes production methods and conversion processes for all types of biofuels, including bioethanol and biohydrogen, and outlines the pros and cons of each
Biomass in Small-Scale Energy Applications
Author: Mateusz Szubel
Publisher: CRC Press
ISBN: 1000682498
Category : Science
Languages : en
Pages : 361
Book Description
Biomass in Small-Scale Energy Applications: Theory and Practice presents the current trends in the development of selected biomass-based technologies for distributed energy generation. It describes the methodology, experimental results, and computer simulations with a focus on pilot systems and devices crucial in multiple applications with related environmental/economic issues. It describes which stages of design, development, and application of advanced biomass-based energy devices are critical in order for a given technology to be successful. It includes both technical/practical information and theoretical background related to combustion kinetics, thermodynamics in energy systems, and properties of selected types of biomass, as well as case studies.
Publisher: CRC Press
ISBN: 1000682498
Category : Science
Languages : en
Pages : 361
Book Description
Biomass in Small-Scale Energy Applications: Theory and Practice presents the current trends in the development of selected biomass-based technologies for distributed energy generation. It describes the methodology, experimental results, and computer simulations with a focus on pilot systems and devices crucial in multiple applications with related environmental/economic issues. It describes which stages of design, development, and application of advanced biomass-based energy devices are critical in order for a given technology to be successful. It includes both technical/practical information and theoretical background related to combustion kinetics, thermodynamics in energy systems, and properties of selected types of biomass, as well as case studies.
Bioenergy Research: Advances and Applications
Author: Vijai G. Gupta
Publisher: Newnes
ISBN: 0444595643
Category : Technology & Engineering
Languages : en
Pages : 513
Book Description
Bioenergy Research: Advances and Applications brings biology and engineering together to address the challenges of future energy needs. The book consolidates the most recent research on current technologies, concepts, and commercial developments in various types of widely used biofuels and integrated biorefineries, across the disciplines of biochemistry, biotechnology, phytology, and microbiology. All the chapters in the book are derived from international scientific experts in their respective research areas. They provide you with clear and concise information on both standard and more recent bioenergy production methods, including hydrolysis and microbial fermentation. Chapters are also designed to facilitate early stage researchers, and enables you to easily grasp the concepts, methodologies and application of bioenergy technologies. Each chapter in the book describes the merits and drawbacks of each technology as well as its usefulness. The book provides information on recent approaches to graduates, post-graduates, researchers and practitioners studying and working in field of the bioenergy. It is an invaluable information resource on biomass-based biofuels for fundamental and applied research, catering to researchers in the areas of bio-hydrogen, bioethanol, bio-methane and biorefineries, and the use of microbial processes in the conversion of biomass into biofuels. - Reviews all existing and promising technologies for production of advanced biofuels in addition to bioenergy policies and research funding - Cutting-edge research concepts for biofuels production using biological and biochemical routes, including microbial fuel cells - Includes production methods and conversion processes for all types of biofuels, including bioethanol and biohydrogen, and outlines the pros and cons of each
Publisher: Newnes
ISBN: 0444595643
Category : Technology & Engineering
Languages : en
Pages : 513
Book Description
Bioenergy Research: Advances and Applications brings biology and engineering together to address the challenges of future energy needs. The book consolidates the most recent research on current technologies, concepts, and commercial developments in various types of widely used biofuels and integrated biorefineries, across the disciplines of biochemistry, biotechnology, phytology, and microbiology. All the chapters in the book are derived from international scientific experts in their respective research areas. They provide you with clear and concise information on both standard and more recent bioenergy production methods, including hydrolysis and microbial fermentation. Chapters are also designed to facilitate early stage researchers, and enables you to easily grasp the concepts, methodologies and application of bioenergy technologies. Each chapter in the book describes the merits and drawbacks of each technology as well as its usefulness. The book provides information on recent approaches to graduates, post-graduates, researchers and practitioners studying and working in field of the bioenergy. It is an invaluable information resource on biomass-based biofuels for fundamental and applied research, catering to researchers in the areas of bio-hydrogen, bioethanol, bio-methane and biorefineries, and the use of microbial processes in the conversion of biomass into biofuels. - Reviews all existing and promising technologies for production of advanced biofuels in addition to bioenergy policies and research funding - Cutting-edge research concepts for biofuels production using biological and biochemical routes, including microbial fuel cells - Includes production methods and conversion processes for all types of biofuels, including bioethanol and biohydrogen, and outlines the pros and cons of each
Biomass as Energy Source
Author: Erik Dahlquist
Publisher: CRC Press
ISBN: 0203120256
Category : Science
Languages : en
Pages : 312
Book Description
Global energy use is approximately 140 000 TWh per year. Interestingly, biomass production amounts to approximately 270 000 TWh per year, or roughly twice as much, whereas the official figure of biomass use for energy applications is 10-13% of the global energy use. This shows that biomass is not a marginal energy resource but more than capable of
Publisher: CRC Press
ISBN: 0203120256
Category : Science
Languages : en
Pages : 312
Book Description
Global energy use is approximately 140 000 TWh per year. Interestingly, biomass production amounts to approximately 270 000 TWh per year, or roughly twice as much, whereas the official figure of biomass use for energy applications is 10-13% of the global energy use. This shows that biomass is not a marginal energy resource but more than capable of
Biomass and Bioenergy
Author: Khalid Rehman Hakeem
Publisher: Springer
ISBN: 3319075780
Category : Science
Languages : en
Pages : 405
Book Description
Biomass obtained from agricultural residues or forest can be used to produce different materials and bioenergy required in a modern society. As compared to other resources available, biomass is one of the most common and widespread resources in the world. Thus, biomass has the potential to provide a renewable energy source, both locally and across large areas of the world. It is estimated that the total investment in the biomass sector between 2008 and 2021 will reach the large sum of $104 billion. Presently bioenergy is the most important renewable energy option and will remain so the near and medium-term future. Previously several countries try to explore the utilization of biomass in bioenergy and composite sector. Biomass has the potential to become the world’s largest and most sustainable energy source and will be very much in demand. Bioenergy is based on resources that can be utilized on a sustainable basis all around the world and can thus serve as an effective option for the provision of energy services. In addition, the benefits accrued go beyond energy provision, creating unique opportunities for regional development. The present book will provide an up-to-date account of non-wood, forest residues, agricultural biomass (natural fibers), and energy crops together with processing, properties, and its applications to ensure biomass utilization and reuse. All aspects of biomass and bioenergy and their properties and applications will be critically re-examined. The book consists of three sections, presenting Non wood and forest products from forestry, arboriculture activities or from wood processing, agricultural biomass (natural fibers) from agricultural harvesting or processing and finally energy crops: high yield crops and grasses grown especially for energy production.
Publisher: Springer
ISBN: 3319075780
Category : Science
Languages : en
Pages : 405
Book Description
Biomass obtained from agricultural residues or forest can be used to produce different materials and bioenergy required in a modern society. As compared to other resources available, biomass is one of the most common and widespread resources in the world. Thus, biomass has the potential to provide a renewable energy source, both locally and across large areas of the world. It is estimated that the total investment in the biomass sector between 2008 and 2021 will reach the large sum of $104 billion. Presently bioenergy is the most important renewable energy option and will remain so the near and medium-term future. Previously several countries try to explore the utilization of biomass in bioenergy and composite sector. Biomass has the potential to become the world’s largest and most sustainable energy source and will be very much in demand. Bioenergy is based on resources that can be utilized on a sustainable basis all around the world and can thus serve as an effective option for the provision of energy services. In addition, the benefits accrued go beyond energy provision, creating unique opportunities for regional development. The present book will provide an up-to-date account of non-wood, forest residues, agricultural biomass (natural fibers), and energy crops together with processing, properties, and its applications to ensure biomass utilization and reuse. All aspects of biomass and bioenergy and their properties and applications will be critically re-examined. The book consists of three sections, presenting Non wood and forest products from forestry, arboriculture activities or from wood processing, agricultural biomass (natural fibers) from agricultural harvesting or processing and finally energy crops: high yield crops and grasses grown especially for energy production.
Biomass for Energy Application
Author: David Herak
Publisher: MDPI
ISBN: 3036502688
Category : Science
Languages : en
Pages : 246
Book Description
This book focuses on the utilization of biomass for energy applications and mainly covers the original research and studies related to thermochemical conversion, biological conversion and physical conversion. It contains a summary the current scientific knowledge in the field of biomass utilization, which is the first of its kind in the literature. Energy potentials and different principles of energy transformation from various renewable energy sources (bamboo, wood residue, straw, sorrel, hay, pines, sunflower stalks, hazelnut husks, quinoa, camelina, crambe, safflower, muscantus and municipal sewage sludge, among others) are described in detail in this book. Different types of pyrolysis or torrefaction processing, combustion, thermal degradation, mechanical properties affecting processing, pre-treatment or treatment processes, or other processes based on thermochemical methods are described as well. The integral part of this book is the bibliometric analysis of worldwide publication trends on biomass and bioenergy with respect to the research evolution with the possibility of predicting future scenarios and the participation of stakeholders in the sector.
Publisher: MDPI
ISBN: 3036502688
Category : Science
Languages : en
Pages : 246
Book Description
This book focuses on the utilization of biomass for energy applications and mainly covers the original research and studies related to thermochemical conversion, biological conversion and physical conversion. It contains a summary the current scientific knowledge in the field of biomass utilization, which is the first of its kind in the literature. Energy potentials and different principles of energy transformation from various renewable energy sources (bamboo, wood residue, straw, sorrel, hay, pines, sunflower stalks, hazelnut husks, quinoa, camelina, crambe, safflower, muscantus and municipal sewage sludge, among others) are described in detail in this book. Different types of pyrolysis or torrefaction processing, combustion, thermal degradation, mechanical properties affecting processing, pre-treatment or treatment processes, or other processes based on thermochemical methods are described as well. The integral part of this book is the bibliometric analysis of worldwide publication trends on biomass and bioenergy with respect to the research evolution with the possibility of predicting future scenarios and the participation of stakeholders in the sector.
Biomass as Feedstock for a Bioenergy and Bioproducts Industry
Author:
Publisher:
ISBN:
Category : Agriculture and energy
Languages : en
Pages : 82
Book Description
The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries-- biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R AND D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R AND D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America s future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors?
Publisher:
ISBN:
Category : Agriculture and energy
Languages : en
Pages : 82
Book Description
The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries-- biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R AND D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R AND D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America s future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors?
Biomass Conversion Processes for Energy and Fuels
Author: Samir S. Sofer
Publisher: Springer Science & Business Media
ISBN: 1475703015
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
Countless pages have been written on alternative energy sources since the fall of 1973 when our dependence on fossil petroleum resources became a grim reality. One such alternative is the use of biomass for producing energy and liquid and gaseous fuels. The term "biomass" generally refers to renewable organic matter generated by plants through photosynthesis. Thus trees, agri cultural crops, and aquatic plants are prime sources of biomass. Furthermore, as these sources of biomass are harvested and processed into commercial prod ucts, residues and wastes are generated. These, together with municipal solid wastes, not only add to the total organic raw material base that can be utilized for energy purposes but they also need to be removed for environmental reasons. Biomass has been used since antiquity for energy and material needs. In is still one of the most sought-after energy sources in most of the fact, firewood world. Furthermore, wood was still a dominant energy source in the U. S. only a hundred years ago (equal with coal). Currently, biomass contributes about 15 2 quadrillion Btu (l quad = 10 Btu) of energy to our total energy consump tion of about 78 quad. Two quad may not seem large when compared to the contribution made by petroleum (38 quad) or natural gas (20 quad), but bio mass is nearly comparable to nuclear energy (2. 7 quad).
Publisher: Springer Science & Business Media
ISBN: 1475703015
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
Countless pages have been written on alternative energy sources since the fall of 1973 when our dependence on fossil petroleum resources became a grim reality. One such alternative is the use of biomass for producing energy and liquid and gaseous fuels. The term "biomass" generally refers to renewable organic matter generated by plants through photosynthesis. Thus trees, agri cultural crops, and aquatic plants are prime sources of biomass. Furthermore, as these sources of biomass are harvested and processed into commercial prod ucts, residues and wastes are generated. These, together with municipal solid wastes, not only add to the total organic raw material base that can be utilized for energy purposes but they also need to be removed for environmental reasons. Biomass has been used since antiquity for energy and material needs. In is still one of the most sought-after energy sources in most of the fact, firewood world. Furthermore, wood was still a dominant energy source in the U. S. only a hundred years ago (equal with coal). Currently, biomass contributes about 15 2 quadrillion Btu (l quad = 10 Btu) of energy to our total energy consump tion of about 78 quad. Two quad may not seem large when compared to the contribution made by petroleum (38 quad) or natural gas (20 quad), but bio mass is nearly comparable to nuclear energy (2. 7 quad).
Biofuels, Bioenergy and Food Security
Author: Deepayan Debnath
Publisher: Academic Press
ISBN: 0128039817
Category : Science
Languages : en
Pages : 292
Book Description
Biofuels, Bioenergy and Food Security: Technology, Institutions and Policies explores the popular 'Food versus Fuel' debates, discussing the complex relationship between the biofuel and agricultural markets. From the importance of bioenergy in the context of climate change, to the potentially positive environmental consequences of growing second generation biofuels crops, this book provides important insights into the impact of policy, the technical implementation and the resulting impact of biofuels. The discussion of existing issues hindering the growth of the cellulosic biofuel industry and their remedies are particularly relevant for policy makers and others associated with the biofuel industry. Transferring information on bioenergy economy through the discussion of the current and emerging biofuel market, country specific case studies explain the existing biofuel policy and its consequences to both the energy and agricultural markets. Economic simulation models explain the future of the bioenergy markets. Biofuels, Bioenergy and Food Security: Technology, Institutions and Policies is an invaluable resource to the students, scientific community, policy makers, and investors in the bioenergy industry. Students will benefit from a variety of perspectives on major societal questions in context of the interaction between food security and bioenergy. Its review of existing literature on the biofuel marker, investment opportunities, and energy independence provides a broad overview to allow informed decision making regarding the industry. - Provides an integrated overview of the world biofuel market by country, including a summary of the existing biofuel policies, role of investment opportunities, and rural development potential - Discusses the impact of biofuels on efforts by developing countries to become more energy self-sufficient - Examines the environmental consequences of biomass-based biofuel use.
Publisher: Academic Press
ISBN: 0128039817
Category : Science
Languages : en
Pages : 292
Book Description
Biofuels, Bioenergy and Food Security: Technology, Institutions and Policies explores the popular 'Food versus Fuel' debates, discussing the complex relationship between the biofuel and agricultural markets. From the importance of bioenergy in the context of climate change, to the potentially positive environmental consequences of growing second generation biofuels crops, this book provides important insights into the impact of policy, the technical implementation and the resulting impact of biofuels. The discussion of existing issues hindering the growth of the cellulosic biofuel industry and their remedies are particularly relevant for policy makers and others associated with the biofuel industry. Transferring information on bioenergy economy through the discussion of the current and emerging biofuel market, country specific case studies explain the existing biofuel policy and its consequences to both the energy and agricultural markets. Economic simulation models explain the future of the bioenergy markets. Biofuels, Bioenergy and Food Security: Technology, Institutions and Policies is an invaluable resource to the students, scientific community, policy makers, and investors in the bioenergy industry. Students will benefit from a variety of perspectives on major societal questions in context of the interaction between food security and bioenergy. Its review of existing literature on the biofuel marker, investment opportunities, and energy independence provides a broad overview to allow informed decision making regarding the industry. - Provides an integrated overview of the world biofuel market by country, including a summary of the existing biofuel policies, role of investment opportunities, and rural development potential - Discusses the impact of biofuels on efforts by developing countries to become more energy self-sufficient - Examines the environmental consequences of biomass-based biofuel use.
Polygeneration Systems
Author: Francesco Calise
Publisher: Academic Press
ISBN: 0128206268
Category : Technology & Engineering
Languages : en
Pages : 453
Book Description
The support for polygeneration lies in the possibility of integrating different technologies into a single energy system, to maximize the utilization of both fossil and renewable fuels. A system that delivers multiple forms of energy to users, maximizing the overall efficiency makes polygeneration an emerging and viable option for energy consuming industries. Polygeneration Systems: Design, Processes and Technologies provides simple and advanced calculation techniques to evaluate energy, environmental and economic performance of polygeneration systems under analysis. With specific design guidelines for each type of polygeneration system and experimental performance data, referred both to single components and overall systems, this title covers all aspects of polygeneration from design to operation, optimization and practical implementation. Giving different aspects of both fossil and non-fossil fuel based polygeneration and the wider area of polygeneration processes, this book helps readers learn general principles to specific system design and development through analysis of case studies, examples, simulation characteristics and thermodynamic and economic data. - Detailed economic data for technology to assist developing feasibility studies regarding the possible application of polygeneration technologies - Offers a comprehensive list of all current numerical and experimental results of polygeneration available - Includes simulation models, cost figures, demonstration projects and test standards for designers and researchers to validate their own models and/or to test the reliability of their results
Publisher: Academic Press
ISBN: 0128206268
Category : Technology & Engineering
Languages : en
Pages : 453
Book Description
The support for polygeneration lies in the possibility of integrating different technologies into a single energy system, to maximize the utilization of both fossil and renewable fuels. A system that delivers multiple forms of energy to users, maximizing the overall efficiency makes polygeneration an emerging and viable option for energy consuming industries. Polygeneration Systems: Design, Processes and Technologies provides simple and advanced calculation techniques to evaluate energy, environmental and economic performance of polygeneration systems under analysis. With specific design guidelines for each type of polygeneration system and experimental performance data, referred both to single components and overall systems, this title covers all aspects of polygeneration from design to operation, optimization and practical implementation. Giving different aspects of both fossil and non-fossil fuel based polygeneration and the wider area of polygeneration processes, this book helps readers learn general principles to specific system design and development through analysis of case studies, examples, simulation characteristics and thermodynamic and economic data. - Detailed economic data for technology to assist developing feasibility studies regarding the possible application of polygeneration technologies - Offers a comprehensive list of all current numerical and experimental results of polygeneration available - Includes simulation models, cost figures, demonstration projects and test standards for designers and researchers to validate their own models and/or to test the reliability of their results
Renewable Fuel Standard
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309187516
Category : Technology & Engineering
Languages : en
Pages : 416
Book Description
In the United States, we have come to depend on plentiful and inexpensive energy to support our economy and lifestyles. In recent years, many questions have been raised regarding the sustainability of our current pattern of high consumption of nonrenewable energy and its environmental consequences. Further, because the United States imports about 55 percent of the nation's consumption of crude oil, there are additional concerns about the security of supply. Hence, efforts are being made to find alternatives to our current pathway, including greater energy efficiency and use of energy sources that could lower greenhouse gas (GHG) emissions such as nuclear and renewable sources, including solar, wind, geothermal, and biofuels. The United States has a long history with biofuels and the nation is on a course charted to achieve a substantial increase in biofuels. Renewable Fuel Standard evaluates the economic and environmental consequences of increasing biofuels production as a result of Renewable Fuels Standard, as amended by EISA (RFS2). The report describes biofuels produced in 2010 and those projected to be produced and consumed by 2022, reviews model projections and other estimates of the relative impact on the prices of land, and discusses the potential environmental harm and benefits of biofuels production and the barriers to achieving the RFS2 consumption mandate. Policy makers, investors, leaders in the transportation sector, and others with concerns for the environment, economy, and energy security can rely on the recommendations provided in this report.
Publisher: National Academies Press
ISBN: 0309187516
Category : Technology & Engineering
Languages : en
Pages : 416
Book Description
In the United States, we have come to depend on plentiful and inexpensive energy to support our economy and lifestyles. In recent years, many questions have been raised regarding the sustainability of our current pattern of high consumption of nonrenewable energy and its environmental consequences. Further, because the United States imports about 55 percent of the nation's consumption of crude oil, there are additional concerns about the security of supply. Hence, efforts are being made to find alternatives to our current pathway, including greater energy efficiency and use of energy sources that could lower greenhouse gas (GHG) emissions such as nuclear and renewable sources, including solar, wind, geothermal, and biofuels. The United States has a long history with biofuels and the nation is on a course charted to achieve a substantial increase in biofuels. Renewable Fuel Standard evaluates the economic and environmental consequences of increasing biofuels production as a result of Renewable Fuels Standard, as amended by EISA (RFS2). The report describes biofuels produced in 2010 and those projected to be produced and consumed by 2022, reviews model projections and other estimates of the relative impact on the prices of land, and discusses the potential environmental harm and benefits of biofuels production and the barriers to achieving the RFS2 consumption mandate. Policy makers, investors, leaders in the transportation sector, and others with concerns for the environment, economy, and energy security can rely on the recommendations provided in this report.