Author: Heinz-Dieter Ebbinghaus
Publisher: Springer Science & Business Media
ISBN: 3662090589
Category : Mathematics
Languages : en
Pages : 653
Book Description
Gert H. Müller The growth of the number of publications in almost all scientific areas, as in the area of (mathematical) logic, is taken as a sign of our scientifically minded culture, but it also has a terrifying aspect. In addition, given the rapidly growing sophistica tion, specialization and hence subdivision of logic, researchers, students and teachers may have a hard time getting an overview of the existing literature, partic ularly if they do not have an extensive library available in their neighbourhood: they simply do not even know what to ask for! More specifically, if someone vaguely knows that something vaguely connected with his interests exists some where in the literature, he may not be able to find it even by searching through the publications scattered in the review journals. Answering this challenge was and is the central motivation for compiling this Bibliography. The Bibliography comprises (presently) the following six volumes (listed with the corresponding Editors): I. Classical Logic W. Rautenberg 11. Non-classical Logics W. Rautenberg 111. Model Theory H.-D. Ebbinghaus IV. Recursion Theory P.G. Hinman V. Set Theory A.R. Blass VI. ProofTheory; Constructive Mathematics J.E. Kister; D. van Dalen & A.S. Troelstra.
Ω-Bibliography of Mathematical Logic
Author: Heinz-Dieter Ebbinghaus
Publisher: Springer Science & Business Media
ISBN: 3662090589
Category : Mathematics
Languages : en
Pages : 653
Book Description
Gert H. Müller The growth of the number of publications in almost all scientific areas, as in the area of (mathematical) logic, is taken as a sign of our scientifically minded culture, but it also has a terrifying aspect. In addition, given the rapidly growing sophistica tion, specialization and hence subdivision of logic, researchers, students and teachers may have a hard time getting an overview of the existing literature, partic ularly if they do not have an extensive library available in their neighbourhood: they simply do not even know what to ask for! More specifically, if someone vaguely knows that something vaguely connected with his interests exists some where in the literature, he may not be able to find it even by searching through the publications scattered in the review journals. Answering this challenge was and is the central motivation for compiling this Bibliography. The Bibliography comprises (presently) the following six volumes (listed with the corresponding Editors): I. Classical Logic W. Rautenberg 11. Non-classical Logics W. Rautenberg 111. Model Theory H.-D. Ebbinghaus IV. Recursion Theory P.G. Hinman V. Set Theory A.R. Blass VI. ProofTheory; Constructive Mathematics J.E. Kister; D. van Dalen & A.S. Troelstra.
Publisher: Springer Science & Business Media
ISBN: 3662090589
Category : Mathematics
Languages : en
Pages : 653
Book Description
Gert H. Müller The growth of the number of publications in almost all scientific areas, as in the area of (mathematical) logic, is taken as a sign of our scientifically minded culture, but it also has a terrifying aspect. In addition, given the rapidly growing sophistica tion, specialization and hence subdivision of logic, researchers, students and teachers may have a hard time getting an overview of the existing literature, partic ularly if they do not have an extensive library available in their neighbourhood: they simply do not even know what to ask for! More specifically, if someone vaguely knows that something vaguely connected with his interests exists some where in the literature, he may not be able to find it even by searching through the publications scattered in the review journals. Answering this challenge was and is the central motivation for compiling this Bibliography. The Bibliography comprises (presently) the following six volumes (listed with the corresponding Editors): I. Classical Logic W. Rautenberg 11. Non-classical Logics W. Rautenberg 111. Model Theory H.-D. Ebbinghaus IV. Recursion Theory P.G. Hinman V. Set Theory A.R. Blass VI. ProofTheory; Constructive Mathematics J.E. Kister; D. van Dalen & A.S. Troelstra.
A Profile of Mathematical Logic
Author: Howard DeLong
Publisher: Courier Corporation
ISBN: 0486139158
Category : Mathematics
Languages : en
Pages : 322
Book Description
This introduction to mathematical logic explores philosophical issues and Gödel's Theorem. Its widespread influence extends to the author of Gödel, Escher, Bach, whose Pulitzer Prize–winning book was inspired by this work.
Publisher: Courier Corporation
ISBN: 0486139158
Category : Mathematics
Languages : en
Pages : 322
Book Description
This introduction to mathematical logic explores philosophical issues and Gödel's Theorem. Its widespread influence extends to the author of Gödel, Escher, Bach, whose Pulitzer Prize–winning book was inspired by this work.
Mathematical Logic
Author: R.O. Gandy
Publisher: Elsevier
ISBN: 0080535925
Category : Computers
Languages : en
Pages : 307
Book Description
Mathematical Logic is a collection of the works of one of the leading figures in 20th-century science. This collection of A.M. Turing's works is intended to include all his mature scientific writing, including a substantial quantity of unpublished material. His work in pure mathematics and mathematical logic extended considerably further; the work of his last years, on morphogenesis in plants, is also of the greatest originality and of permanent importance. This book is divided into three parts. The first part focuses on computability and ordinal logics and covers Turing's work between 1937 and 1938. The second part covers type theory; it provides a general introduction to Turing's work on type theory and covers his published and unpublished works between 1941 and 1948. Finally, the third part focuses on enigmas, mysteries, and loose ends. This concluding section of the book discusses Turing's Treatise on the Enigma, with excerpts from the Enigma Paper. It also delves into Turing's papers on programming and on minimum cost sequential analysis, featuring an excerpt from the unpublished manuscript. This book will be of interest to mathematicians, logicians, and computer scientists.
Publisher: Elsevier
ISBN: 0080535925
Category : Computers
Languages : en
Pages : 307
Book Description
Mathematical Logic is a collection of the works of one of the leading figures in 20th-century science. This collection of A.M. Turing's works is intended to include all his mature scientific writing, including a substantial quantity of unpublished material. His work in pure mathematics and mathematical logic extended considerably further; the work of his last years, on morphogenesis in plants, is also of the greatest originality and of permanent importance. This book is divided into three parts. The first part focuses on computability and ordinal logics and covers Turing's work between 1937 and 1938. The second part covers type theory; it provides a general introduction to Turing's work on type theory and covers his published and unpublished works between 1941 and 1948. Finally, the third part focuses on enigmas, mysteries, and loose ends. This concluding section of the book discusses Turing's Treatise on the Enigma, with excerpts from the Enigma Paper. It also delves into Turing's papers on programming and on minimum cost sequential analysis, featuring an excerpt from the unpublished manuscript. This book will be of interest to mathematicians, logicians, and computer scientists.
Introduction To Mathematical Logic (Extended Edition)
Author: Michal Walicki
Publisher: World Scientific Publishing Company
ISBN: 9814719986
Category : Mathematics
Languages : en
Pages : 302
Book Description
This is a systematic and well-paced introduction to mathematical logic. Excellent as a course text, the book presupposes only elementary background and can be used also for self-study by more ambitious students.Starting with the basics of set theory, induction and computability, it covers propositional and first order logic — their syntax, reasoning systems and semantics. Soundness and completeness results for Hilbert's and Gentzen's systems are presented, along with simple decidability arguments. The general applicability of various concepts and techniques is demonstrated by highlighting their consistent reuse in different contexts.Unlike in most comparable texts, presentation of syntactic reasoning systems precedes the semantic explanations. The simplicity of syntactic constructions and rules — of a high, though often neglected, pedagogical value — aids students in approaching more complex semantic issues. This order of presentation also brings forth the relative independence of syntax from the semantics, helping to appreciate the importance of the purely symbolic systems, like those underlying computers.An overview of the history of logic precedes the main text, while informal analogies precede introduction of most central concepts. These informal aspects are kept clearly apart from the technical ones. Together, they form a unique text which may be appreciated equally by lecturers and students occupied with mathematical precision, as well as those interested in the relations of logical formalisms to the problems of computability and the philosophy of logic.This revised edition contains also, besides many new exercises, a new chapter on semantic paradoxes. An equivalence of logical and graphical representations allows us to see vicious circularity as the odd cycles in the graphical representation and can be used as a simple tool for diagnosing paradoxes in natural discourse.
Publisher: World Scientific Publishing Company
ISBN: 9814719986
Category : Mathematics
Languages : en
Pages : 302
Book Description
This is a systematic and well-paced introduction to mathematical logic. Excellent as a course text, the book presupposes only elementary background and can be used also for self-study by more ambitious students.Starting with the basics of set theory, induction and computability, it covers propositional and first order logic — their syntax, reasoning systems and semantics. Soundness and completeness results for Hilbert's and Gentzen's systems are presented, along with simple decidability arguments. The general applicability of various concepts and techniques is demonstrated by highlighting their consistent reuse in different contexts.Unlike in most comparable texts, presentation of syntactic reasoning systems precedes the semantic explanations. The simplicity of syntactic constructions and rules — of a high, though often neglected, pedagogical value — aids students in approaching more complex semantic issues. This order of presentation also brings forth the relative independence of syntax from the semantics, helping to appreciate the importance of the purely symbolic systems, like those underlying computers.An overview of the history of logic precedes the main text, while informal analogies precede introduction of most central concepts. These informal aspects are kept clearly apart from the technical ones. Together, they form a unique text which may be appreciated equally by lecturers and students occupied with mathematical precision, as well as those interested in the relations of logical formalisms to the problems of computability and the philosophy of logic.This revised edition contains also, besides many new exercises, a new chapter on semantic paradoxes. An equivalence of logical and graphical representations allows us to see vicious circularity as the odd cycles in the graphical representation and can be used as a simple tool for diagnosing paradoxes in natural discourse.
Mathematical Logic
Author: Stephen Cole Kleene
Publisher: Courier Corporation
ISBN: 0486317072
Category : Mathematics
Languages : en
Pages : 436
Book Description
Contents include an elementary but thorough overview of mathematical logic of 1st order; formal number theory; surveys of the work by Church, Turing, and others, including Gödel's completeness theorem, Gentzen's theorem, more.
Publisher: Courier Corporation
ISBN: 0486317072
Category : Mathematics
Languages : en
Pages : 436
Book Description
Contents include an elementary but thorough overview of mathematical logic of 1st order; formal number theory; surveys of the work by Church, Turing, and others, including Gödel's completeness theorem, Gentzen's theorem, more.
A Course in Mathematical Logic for Mathematicians
Author: Yu. I. Manin
Publisher: Springer Science & Business Media
ISBN: 1441906150
Category : Mathematics
Languages : en
Pages : 389
Book Description
1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some time. In the intervening three decades, a lot of interesting things have happened to mathematical logic: (i) Model theory has shown that insights acquired in the study of formal languages could be used fruitfully in solving old problems of conventional mathematics. (ii) Mathematics has been and is moving with growing acceleration from the set-theoretic language of structures to the language and intuition of (higher) categories, leaving behind old concerns about in?nities: a new view of foundations is now emerging. (iii) Computer science, a no-nonsense child of the abstract computability theory, has been creatively dealing with old challenges and providing new ones, such as the P/NP problem. Planning additional chapters for this second edition, I have decided to focus onmodeltheory,the conspicuousabsenceofwhichinthe ?rsteditionwasnoted in several reviews, and the theory of computation, including its categorical and quantum aspects. The whole Part IV: Model Theory, is new. I am very grateful to Boris I. Zilber, who kindly agreed to write it. It may be read directly after Chapter II. The contents of the ?rst edition are basically reproduced here as Chapters I–VIII. Section IV.7, on the cardinality of the continuum, is completed by Section IV.7.3, discussing H. Woodin’s discovery.
Publisher: Springer Science & Business Media
ISBN: 1441906150
Category : Mathematics
Languages : en
Pages : 389
Book Description
1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some time. In the intervening three decades, a lot of interesting things have happened to mathematical logic: (i) Model theory has shown that insights acquired in the study of formal languages could be used fruitfully in solving old problems of conventional mathematics. (ii) Mathematics has been and is moving with growing acceleration from the set-theoretic language of structures to the language and intuition of (higher) categories, leaving behind old concerns about in?nities: a new view of foundations is now emerging. (iii) Computer science, a no-nonsense child of the abstract computability theory, has been creatively dealing with old challenges and providing new ones, such as the P/NP problem. Planning additional chapters for this second edition, I have decided to focus onmodeltheory,the conspicuousabsenceofwhichinthe ?rsteditionwasnoted in several reviews, and the theory of computation, including its categorical and quantum aspects. The whole Part IV: Model Theory, is new. I am very grateful to Boris I. Zilber, who kindly agreed to write it. It may be read directly after Chapter II. The contents of the ?rst edition are basically reproduced here as Chapters I–VIII. Section IV.7, on the cardinality of the continuum, is completed by Section IV.7.3, discussing H. Woodin’s discovery.
Mathematical Logic with Special Reference to the Natural Numbers
Author: S. W. P. Steen
Publisher: Cambridge University Press
ISBN: 0521080533
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book presents a comprehensive treatment of basic mathematical logic. The author's aim is to make exact the vague, intuitive notions of natural number, preciseness, and correctness, and to invent a method whereby these notions can be communicated to others and stored in the memory. He adopts a symbolic language in which ideas about natural numbers can be stated precisely and meaningfully, and then investigates the properties and limitations of this language. The treatment of mathematical concepts in the main body of the text is rigorous, but, a section of 'historical remarks' traces the evolution of the ideas presented in each chapter. Sources of the original accounts of these developments are listed in the bibliography.
Publisher: Cambridge University Press
ISBN: 0521080533
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book presents a comprehensive treatment of basic mathematical logic. The author's aim is to make exact the vague, intuitive notions of natural number, preciseness, and correctness, and to invent a method whereby these notions can be communicated to others and stored in the memory. He adopts a symbolic language in which ideas about natural numbers can be stated precisely and meaningfully, and then investigates the properties and limitations of this language. The treatment of mathematical concepts in the main body of the text is rigorous, but, a section of 'historical remarks' traces the evolution of the ideas presented in each chapter. Sources of the original accounts of these developments are listed in the bibliography.
Applied Linear Algebra
Author: Lorenzo Sadun
Publisher: American Mathematical Society
ISBN: 1470470047
Category : Mathematics
Languages : en
Pages : 392
Book Description
Linear algebra permeates mathematics, as well as physics and engineering. In this text for junior and senior undergraduates, Sadun treats diagonalization as a central tool in solving complicated problems in these subjects by reducing coupled linear evolution problems to a sequence of simpler decoupled problems. This is the Decoupling Principle. Traditionally, difference equations, Markov chains, coupled oscillators, Fourier series, the wave equation, the Schrödinger equation, and Fourier transforms are treated separately, often in different courses. Here, they are treated as particular instances of the decoupling principle, and their solutions are remarkably similar. By understanding this general principle and the many applications given in the book, students will be able to recognize it and to apply it in many other settings. Sadun includes some topics relating to infinite-dimensional spaces. He does not present a general theory, but enough so as to apply the decoupling principle to the wave equation, leading to Fourier series and the Fourier transform. The second edition contains a series of Explorations. Most are numerical labs in which the reader is asked to use standard computer software to look deeper into the subject. Some explorations are theoretical, for instance, relating linear algebra to quantum mechanics. There is also an appendix reviewing basic matrix operations and another with solutions to a third of the exercises.
Publisher: American Mathematical Society
ISBN: 1470470047
Category : Mathematics
Languages : en
Pages : 392
Book Description
Linear algebra permeates mathematics, as well as physics and engineering. In this text for junior and senior undergraduates, Sadun treats diagonalization as a central tool in solving complicated problems in these subjects by reducing coupled linear evolution problems to a sequence of simpler decoupled problems. This is the Decoupling Principle. Traditionally, difference equations, Markov chains, coupled oscillators, Fourier series, the wave equation, the Schrödinger equation, and Fourier transforms are treated separately, often in different courses. Here, they are treated as particular instances of the decoupling principle, and their solutions are remarkably similar. By understanding this general principle and the many applications given in the book, students will be able to recognize it and to apply it in many other settings. Sadun includes some topics relating to infinite-dimensional spaces. He does not present a general theory, but enough so as to apply the decoupling principle to the wave equation, leading to Fourier series and the Fourier transform. The second edition contains a series of Explorations. Most are numerical labs in which the reader is asked to use standard computer software to look deeper into the subject. Some explorations are theoretical, for instance, relating linear algebra to quantum mechanics. There is also an appendix reviewing basic matrix operations and another with solutions to a third of the exercises.
A Concise Introduction to Logic
Author: Craig DeLancey
Publisher: Open SUNY Textbooks
ISBN: 9781942341437
Category :
Languages : en
Pages :
Book Description
Publisher: Open SUNY Textbooks
ISBN: 9781942341437
Category :
Languages : en
Pages :
Book Description
-Bibliography of Mathematical Logic
Author: Gert H Ebbinghaus Heinz-Die Muller
Publisher: Springer
ISBN: 9783662090596
Category :
Languages : en
Pages : 664
Book Description
Publisher: Springer
ISBN: 9783662090596
Category :
Languages : en
Pages : 664
Book Description