Beam Dynamics In High Energy Particle Accelerators (Second Edition)

Beam Dynamics In High Energy Particle Accelerators (Second Edition) PDF Author: Andrzej Wolski
Publisher: World Scientific
ISBN: 9811273340
Category : Science
Languages : en
Pages : 678

Get Book

Book Description
High-energy particle accelerators are as diverse as their uses, which range from scientific research in fields such as high-energy physics, materials science and the life sciences, to applications in industry and medicine. Despite the diversity of accelerators, the particle beams that they are designed to produce behave in ways that share many common features. Beam Dynamics in High Energy Particle Accelerators aims to provide an introduction to phenomena regularly encountered when working with beams in accelerators; from the basic principles of motion of relativistic particles in electromagnetic fields, to instabilities that can affect beam quality in machines operating at high current. This book assumes no prior experience with accelerator physics and develops the subject in a way that provides a solid foundation for more advanced study of specific topics.As well as including numerous revisions and improvements in the text, this second edition features substantial new material, including sections on fringe fields in multipole magnets, Verlet integration for particle tracking, and measurement of beam emittances. References and discussions of current topics have been updated. As with the first edition, the aim is to provide practical and powerful tools and techniques for the study of beam dynamics, while emphasizing the elegance of the subject and helping the reader develop a deep understanding of the relevant physics.

Beam Dynamics In High Energy Particle Accelerators (Second Edition)

Beam Dynamics In High Energy Particle Accelerators (Second Edition) PDF Author: Andrzej Wolski
Publisher: World Scientific
ISBN: 9811273340
Category : Science
Languages : en
Pages : 678

Get Book

Book Description
High-energy particle accelerators are as diverse as their uses, which range from scientific research in fields such as high-energy physics, materials science and the life sciences, to applications in industry and medicine. Despite the diversity of accelerators, the particle beams that they are designed to produce behave in ways that share many common features. Beam Dynamics in High Energy Particle Accelerators aims to provide an introduction to phenomena regularly encountered when working with beams in accelerators; from the basic principles of motion of relativistic particles in electromagnetic fields, to instabilities that can affect beam quality in machines operating at high current. This book assumes no prior experience with accelerator physics and develops the subject in a way that provides a solid foundation for more advanced study of specific topics.As well as including numerous revisions and improvements in the text, this second edition features substantial new material, including sections on fringe fields in multipole magnets, Verlet integration for particle tracking, and measurement of beam emittances. References and discussions of current topics have been updated. As with the first edition, the aim is to provide practical and powerful tools and techniques for the study of beam dynamics, while emphasizing the elegance of the subject and helping the reader develop a deep understanding of the relevant physics.

Beam Dynamics in High Energy Particle Accelerators

Beam Dynamics in High Energy Particle Accelerators PDF Author: Andrzej Wolski
Publisher:
ISBN: 9789811273322
Category :
Languages : en
Pages : 0

Get Book

Book Description
High-energy particle accelerators are as diverse as their uses, which range from scientific research in fields such as high-energy physics, materials science and the life sciences, to applications in industry and medicine. Despite the diversity of accelerators, the particle beams that they are designed to produce behave in ways that share many common features. Beam Dynamics in High Energy Particle Accelerators aims to provide an introduction to phenomena regularly encountered when working with beams in accelerators; from the basic principles of motion of relativistic particles in electromagnetic fields, to instabilities that can affect beam quality in machines operating at high current. This book assumes no prior experience with accelerator physics and develops the subject in a way that provides a solid foundation for more advanced study of specific topics.As well as including numerous revisions and improvements in the text, this second edition features substantial new material, including sections on fringe fields in multipole magnets, Verlet integration for particle tracking, and measurement of beam emittances. References and discussions of current topics have been updated. As with the first edition, the aim is to provide practical and powerful tools and techniques for the study of beam dynamics, while emphasizing the elegance of the subject and helping the reader develop a deep understanding of the relevant physics.

Particle Accelerator Physics

Particle Accelerator Physics PDF Author: Helmut Wiedemann
Publisher: Springer Science & Business Media
ISBN: 3662029030
Category : Science
Languages : en
Pages : 457

Get Book

Book Description
Particle Accelerator Physics covers the dynamics of relativistic particle beams, basics of particle guidance and focusing, lattice design, characteristics of beam transport systems and circular accelerators. Particle-beam optics is treated in the linear approximation including sextupoles to correct for chromatic aberrations. Perturbations to linear beam dynamics are analyzed in detail and correction measures are discussed, while basic lattice design features and building blocks leading to the design of more complicated beam transport systems and circular accelerators are studied. Characteristics of synchrotron radiation and quantum effects due to the statistical emission of photons on particle trajectories are derived and applied to determine particle-beam parameters. The discussions specifically concentrate on relativistic particle beams and the physics of beam optics in beam transport systems and circular accelerators such as synchrotrons and storage rings. This book forms a broad basis for further, more detailed studies of nonlinear beam dynamics and associated accelerator physics problems, discussed in the subsequent volume.

Particle Accelerator Physics I

Particle Accelerator Physics I PDF Author: Helmut Wiedemann
Publisher: Springer
ISBN: 9783540646716
Category : Science
Languages : en
Pages : 449

Get Book

Book Description
In this second edition of Particle Accelerator Physics, Vol. 1, is mainly a reprint of the first edition without significant changes in content. The bibliography has been updated to include more recent progress in the field of particle accelerators. With the help of many observant readers a number of misprints and errors could be eliminated. The author would like to express his sincere appreciation to all those who have pointed out such shortcomings and wel comes such information and any other relevant information in the future. The author would also like to express his special thanks to the editor Dr. Helmut Lotsch and his staff for editorial as well as technical advice and support which contributed greatly to the broad acceptance of this text and made a second edition of both volumes necessary. Palo Alto, California Helmut Wiedemann November 1998 VII Preface to the First Edition The purpose of this textbook is to provide a comprehensive introduction into the physics of particle accelerators and particle beam dynamics. Parti cle accelerators have become important research tools in high energy physics as well as sources of incoherent and coherent radiation from the far infra red to hard x-rays for basic and applied research. During years of teaching accelerator physics it became clear that the single most annoying obstacle to get introduced into the field is the absence of a suitable textbook.

Particle Accelerator Physics

Particle Accelerator Physics PDF Author: Helmut Wiedemann
Publisher:
ISBN: 9783540006725
Category : Beam dynamics
Languages : en
Pages : 449

Get Book

Book Description
This two-volume book serves as a thorough introduction to the field of high-energy particle accelerator physics and beam dynamics. Volume 1 provides a general understanding of the field and a firm basis for the study of the more elaborate topic, mainly nonlinear and higher-order beam dynamics, which is the subject of Volume 2.

Particle Accelerator Physics

Particle Accelerator Physics PDF Author: Helmut Wiedemann
Publisher: Springer Science & Business Media
ISBN: 366205034X
Category : Science
Languages : en
Pages : 952

Get Book

Book Description
This two-volume book serves as a thorough introduction to the field of high-energy particle accelerator physics and beam dynamics. Volume 1 provides a general understanding of the field and a firm basis for the study of the more elaborate topic, mainly nonlinear and higher-order beam dynamics, which is the subject of Volume 2.

Particle Accelerator Physics II

Particle Accelerator Physics II PDF Author: Helmut Wiedemann
Publisher: Springer Science & Business Media
ISBN: 364297550X
Category : Science
Languages : en
Pages : 478

Get Book

Book Description
This volume continues the discussion of particle accelerator physics beyond the introduction found in volume I. Basic principles of beam dynamics already discussed in the first volume are expanded here into the nonlinear regime so as to tackle fundamental problems encountered in present day accelerator design and development. Nonlinear dynamics is discussed both in terms of the transverse phase space, to determine chromatic and geometric aberrations which limit the dynamic aperture, as well as the longitude phase space in connection with phase focusing at very small values of the momentum compaction. Whenever possible, effects derived theoretically are compared with observations made with existing accelerators.

Physics Of Intense Charged Particle Beams In High Energy Accelerators

Physics Of Intense Charged Particle Beams In High Energy Accelerators PDF Author: Ronald C Davidson
Publisher: World Scientific
ISBN: 1911298186
Category : Science
Languages : en
Pages : 603

Get Book

Book Description
Physics of Intense Charged Particle Beams in High Energy Accelerators is a graduate-level text — complete with 75 assigned problems — which covers a broad range of topics related to the fundamental properties of collective processes and nonlinear dynamics of intense charged particle beams in periodic focusing accelerators and transport systems. The subject matter is treated systematically from first principles, using a unified theoretical approach, and the emphasis is on the development of basic concepts that illustrate the underlying physical processes in circumstances where intense self fields play a major role in determining the evolution of the system. The theoretical analysis includes the full influence of dc space charge and intense self-field effects on detailed equilibrium, stability and transport properties, and is valid over a wide range of system parameters ranging from moderate-intensity, moderate-emittance beams to very-high-intensity, low-emittance beams. This is particularly important at the high beam intensities envisioned for present and next generation accelerators, colliders and transport systems for high energy and nuclear physics applications and for heavy ion fusion. The statistical models used to describe the properties of intense charged particle beams are based on the Vlasov-Maxwell equations, the macroscopic fluid-Maxwell equations, or the Klimontovich-Maxwell equations, as appropriate, and extensive use is made of theoretical techniques developed in the description of one-component nonneutral plasmas, and multispecies electrically-neutral plasmas, as well as established techniques in accelerator physics, classical mechanics, electrodynamics and statistical physics.Physics of Intense Charged Particle Beams in High Energy Accelerators emphasizes basic physics principles, and the thorough presentation style is intended to have a lasting appeal to graduate students and researchers alike. Because of the advanced theoretical techniques developed for describing one-component charged particle systems, a useful companion volume to this book is Physics of Nonneutral Plasmas by Ronald C Davidson./a

Particle Accelerator Physics II

Particle Accelerator Physics II PDF Author: H. Wiedemann
Publisher: Springer Science & Business Media
ISBN: 3642599087
Category : Science
Languages : en
Pages : 489

Get Book

Book Description
Particle Accelerator Physics II continues the discussion of particle accelerator physics beyond the introductory Particle Accelerator Physics I. Aimed at students and scientists who plan to work or are working in the field of accelerator physics. Basic principles of beam dynamics already discussed in Vol.I are expanded into the nonlinear regime in order to tackle fundamental problems encountered in present-day accelerator design and development. Nonlinear dynamics is discussed both for the transverse phase space to determine chromatic and geometric aberrations which limit the dynamic aperture as well as for the longitude phase space in connection with phase focusing at very small values of the momentum compaction. Effects derived theoretically are compared with observations made at existing accelerators.

Introduction to Beam Dynamics in High-energy Electron Storage Rings

Introduction to Beam Dynamics in High-energy Electron Storage Rings PDF Author: Andrzej Wolski
Publisher:
ISBN: 9781681749877
Category : SCIENCE
Languages : en
Pages :

Get Book

Book Description
Electron storage rings play a crucial role in many areas of modern scientific research. Introduction to Beam Dynamics in High-Energy Electron Storage Rings describes the physics of particle behaviour in these machines. Starting with an outline of the history, uses and structure of electron storage rings, the book develops the foundations of beam dynamics, covering particle motion in the components used to guide and focus the beams, the effects of synchrotron radiation, and the impact of interactions between the particles in the beams.