Author: Uffe B. Kjærulff
Publisher: Springer Science & Business Media
ISBN: 0387741011
Category : Computers
Languages : en
Pages : 325
Book Description
Probabilistic networks, also known as Bayesian networks and influence diagrams, have become one of the most promising technologies in the area of applied artificial intelligence. This book provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. Intended primarily for practitioners, this book does not require sophisticated mathematical skills. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his/her level of understanding.
Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis
Author: Uffe B. Kjærulff
Publisher: Springer Science & Business Media
ISBN: 0387741011
Category : Computers
Languages : en
Pages : 325
Book Description
Probabilistic networks, also known as Bayesian networks and influence diagrams, have become one of the most promising technologies in the area of applied artificial intelligence. This book provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. Intended primarily for practitioners, this book does not require sophisticated mathematical skills. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his/her level of understanding.
Publisher: Springer Science & Business Media
ISBN: 0387741011
Category : Computers
Languages : en
Pages : 325
Book Description
Probabilistic networks, also known as Bayesian networks and influence diagrams, have become one of the most promising technologies in the area of applied artificial intelligence. This book provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. Intended primarily for practitioners, this book does not require sophisticated mathematical skills. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his/her level of understanding.
Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis
Author: Uffe B. Kjærulff
Publisher: Springer Science & Business Media
ISBN: 1461451043
Category : Computers
Languages : en
Pages : 388
Book Description
Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new sections, in addition to fully-updated examples, tables, figures, and a revised appendix. Intended primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning under uncertainty. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his or her level of understanding. The techniques and methods presented for knowledge elicitation, model construction and verification, modeling techniques and tricks, learning models from data, and analyses of models have all been developed and refined on the basis of numerous courses that the authors have held for practitioners worldwide.
Publisher: Springer Science & Business Media
ISBN: 1461451043
Category : Computers
Languages : en
Pages : 388
Book Description
Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new sections, in addition to fully-updated examples, tables, figures, and a revised appendix. Intended primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning under uncertainty. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his or her level of understanding. The techniques and methods presented for knowledge elicitation, model construction and verification, modeling techniques and tricks, learning models from data, and analyses of models have all been developed and refined on the basis of numerous courses that the authors have held for practitioners worldwide.
Bayesian Networks and Decision Graphs
Author: Thomas Dyhre Nielsen
Publisher: Springer Science & Business Media
ISBN: 0387682821
Category : Science
Languages : en
Pages : 457
Book Description
This is a brand new edition of an essential work on Bayesian networks and decision graphs. It is an introduction to probabilistic graphical models including Bayesian networks and influence diagrams. The reader is guided through the two types of frameworks with examples and exercises, which also give instruction on how to build these models. Structured in two parts, the first section focuses on probabilistic graphical models, while the second part deals with decision graphs, and in addition to the frameworks described in the previous edition, it also introduces Markov decision process and partially ordered decision problems.
Publisher: Springer Science & Business Media
ISBN: 0387682821
Category : Science
Languages : en
Pages : 457
Book Description
This is a brand new edition of an essential work on Bayesian networks and decision graphs. It is an introduction to probabilistic graphical models including Bayesian networks and influence diagrams. The reader is guided through the two types of frameworks with examples and exercises, which also give instruction on how to build these models. Structured in two parts, the first section focuses on probabilistic graphical models, while the second part deals with decision graphs, and in addition to the frameworks described in the previous edition, it also introduces Markov decision process and partially ordered decision problems.
Symbolic and Quantitative Approaches to Reasoning with Uncertainty
Author: Weiru Liu
Publisher: Springer
ISBN: 3642221521
Category : Computers
Languages : en
Pages : 775
Book Description
This book constitutes the refereed proceedings of the 11th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2011, held in Belfast, UK, in June/July 2011. The 60 revised full papers presented together with 3 invited talks were carefully reviewed and selected from 108 submissions. The papers are organized in topical sections on argumentation; Bayesian networks and causal networks; belief functions; belief revision and inconsistency handling; classification and clustering; default reasoning and logics for reasoning under uncertainty; foundations of reasoning and decision making under uncertainty; fuzzy sets and fuzzy logic; implementation and applications of uncertain systems; possibility theory and possibilistic logic; and uncertainty in databases.
Publisher: Springer
ISBN: 3642221521
Category : Computers
Languages : en
Pages : 775
Book Description
This book constitutes the refereed proceedings of the 11th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2011, held in Belfast, UK, in June/July 2011. The 60 revised full papers presented together with 3 invited talks were carefully reviewed and selected from 108 submissions. The papers are organized in topical sections on argumentation; Bayesian networks and causal networks; belief functions; belief revision and inconsistency handling; classification and clustering; default reasoning and logics for reasoning under uncertainty; foundations of reasoning and decision making under uncertainty; fuzzy sets and fuzzy logic; implementation and applications of uncertain systems; possibility theory and possibilistic logic; and uncertainty in databases.
Risk Assessment
Author: Marvin Rausand
Publisher: John Wiley & Sons
ISBN: 1118281101
Category : Mathematics
Languages : en
Pages : 467
Book Description
An introduction to risk assessment that utilizes key theory and state-of-the-art applications With its balanced coverage of theory and applications along with standards and regulations, Risk Assessment: Theory, Methods, and Applications serves as a comprehensive introduction to the topic. The book serves as a practical guide to current risk analysis and risk assessment, emphasizing the possibility of sudden, major accidents across various areas of practice from machinery and manufacturing processes to nuclear power plants and transportation systems. The author applies a uniform framework to the discussion of each method, setting forth clear objectives and descriptions, while also shedding light on applications, essential resources, and advantages and disadvantages. Following an introduction that provides an overview of risk assessment, the book is organized into two sections that outline key theory, methods, and applications. Introduction to Risk Assessment defines key concepts and details the steps of a thorough risk assessment along with the necessary quantitative risk measures. Chapters outline the overall risk assessment process, and a discussion of accident models and accident causation offers readers new insights into how and why accidents occur to help them make better assessments. Risk Assessment Methods and Applications carefully describes the most relevant methods for risk assessment, including preliminary hazard analysis, HAZOP, fault tree analysis, and event tree analysis. Here, each method is accompanied by a self-contained description as well as workflow diagrams and worksheets that illustrate the use of discussed techniques. Important problem areas in risk assessment, such as barriers and barrier analysis, human errors, and human reliability, are discussed along with uncertainty and sensitivity analysis. Each chapter concludes with a listing of resources for further study of the topic, and detailed appendices outline main results from probability and statistics, related formulas, and a listing of key terms used in risk assessment. A related website features problems that allow readers to test their comprehension of the presented material and supplemental slides to facilitate the learning process. Risk Assessment is an excellent book for courses on risk analysis and risk assessment at the upper-undergraduate and graduate levels. It also serves as a valuable reference for engineers, researchers, consultants, and practitioners who use risk assessment techniques in their everyday work.
Publisher: John Wiley & Sons
ISBN: 1118281101
Category : Mathematics
Languages : en
Pages : 467
Book Description
An introduction to risk assessment that utilizes key theory and state-of-the-art applications With its balanced coverage of theory and applications along with standards and regulations, Risk Assessment: Theory, Methods, and Applications serves as a comprehensive introduction to the topic. The book serves as a practical guide to current risk analysis and risk assessment, emphasizing the possibility of sudden, major accidents across various areas of practice from machinery and manufacturing processes to nuclear power plants and transportation systems. The author applies a uniform framework to the discussion of each method, setting forth clear objectives and descriptions, while also shedding light on applications, essential resources, and advantages and disadvantages. Following an introduction that provides an overview of risk assessment, the book is organized into two sections that outline key theory, methods, and applications. Introduction to Risk Assessment defines key concepts and details the steps of a thorough risk assessment along with the necessary quantitative risk measures. Chapters outline the overall risk assessment process, and a discussion of accident models and accident causation offers readers new insights into how and why accidents occur to help them make better assessments. Risk Assessment Methods and Applications carefully describes the most relevant methods for risk assessment, including preliminary hazard analysis, HAZOP, fault tree analysis, and event tree analysis. Here, each method is accompanied by a self-contained description as well as workflow diagrams and worksheets that illustrate the use of discussed techniques. Important problem areas in risk assessment, such as barriers and barrier analysis, human errors, and human reliability, are discussed along with uncertainty and sensitivity analysis. Each chapter concludes with a listing of resources for further study of the topic, and detailed appendices outline main results from probability and statistics, related formulas, and a listing of key terms used in risk assessment. A related website features problems that allow readers to test their comprehension of the presented material and supplemental slides to facilitate the learning process. Risk Assessment is an excellent book for courses on risk analysis and risk assessment at the upper-undergraduate and graduate levels. It also serves as a valuable reference for engineers, researchers, consultants, and practitioners who use risk assessment techniques in their everyday work.
Advances in Artificial Intelligence: From Theory to Practice
Author: Salem Benferhat
Publisher: Springer
ISBN: 3319600451
Category : Computers
Languages : en
Pages : 485
Book Description
The two-volume set LNCS 10350 and 10351 constitutes the thoroughly refereed proceedings of the 30th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2017, held in Arras, France, in June 2017. The 70 revised full papers presented together with 45 short papers and 3 invited talks were carefully reviewed and selected from 180 submissions. They are organized in topical sections: constraints, planning, and optimization; data mining and machine learning; sensors, signal processing, and data fusion; recommender systems; decision support systems; knowledge representation and reasoning; navigation, control, and autonome agents; sentiment analysis and social media; games, computer vision; and animation; uncertainty management; graphical models: from theory to applications; anomaly detection; agronomy and artificial intelligence; applications of argumentation; intelligent systems in healthcare and mhealth for health outcomes; and innovative applications of textual analysis based on AI.
Publisher: Springer
ISBN: 3319600451
Category : Computers
Languages : en
Pages : 485
Book Description
The two-volume set LNCS 10350 and 10351 constitutes the thoroughly refereed proceedings of the 30th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2017, held in Arras, France, in June 2017. The 70 revised full papers presented together with 45 short papers and 3 invited talks were carefully reviewed and selected from 180 submissions. They are organized in topical sections: constraints, planning, and optimization; data mining and machine learning; sensors, signal processing, and data fusion; recommender systems; decision support systems; knowledge representation and reasoning; navigation, control, and autonome agents; sentiment analysis and social media; games, computer vision; and animation; uncertainty management; graphical models: from theory to applications; anomaly detection; agronomy and artificial intelligence; applications of argumentation; intelligent systems in healthcare and mhealth for health outcomes; and innovative applications of textual analysis based on AI.
Oil and Gas Processing Equipment
Author: G. Unnikrishnan
Publisher: CRC Press
ISBN: 1000174239
Category : Technology & Engineering
Languages : en
Pages : 137
Book Description
Oil and gas industries apply several techniques for assessing and mitigating the risks that are inherent in its operations. In this context, the application of Bayesian Networks (BNs) to risk assessment offers a different probabilistic version of causal reasoning. Introducing probabilistic nature of hazards, conditional probability and Bayesian thinking, it discusses how cause and effect of process hazards can be modelled using BNs and development of large BNs from basic building blocks. Focus is on development of BNs for typical equipment in industry including accident case studies and its usage along with other conventional risk assessment methods. Aimed at professionals in oil and gas industry, safety engineering, risk assessment, this book Brings together basics of Bayesian theory, Bayesian Networks and applications of the same to process safety hazards and risk assessment in the oil and gas industry Presents sequence of steps for setting up the model, populating the model with data and simulating the model for practical cases in a systematic manner Includes a comprehensive list on sources of failure data and tips on modelling and simulation of large and complex networks Presents modelling and simulation of loss of containment of actual equipment in oil and gas industry such as Separator, Storage tanks, Pipeline, Compressor and risk assessments Discusses case studies to demonstrate the practicability of use of Bayesian Network in routine risk assessments
Publisher: CRC Press
ISBN: 1000174239
Category : Technology & Engineering
Languages : en
Pages : 137
Book Description
Oil and gas industries apply several techniques for assessing and mitigating the risks that are inherent in its operations. In this context, the application of Bayesian Networks (BNs) to risk assessment offers a different probabilistic version of causal reasoning. Introducing probabilistic nature of hazards, conditional probability and Bayesian thinking, it discusses how cause and effect of process hazards can be modelled using BNs and development of large BNs from basic building blocks. Focus is on development of BNs for typical equipment in industry including accident case studies and its usage along with other conventional risk assessment methods. Aimed at professionals in oil and gas industry, safety engineering, risk assessment, this book Brings together basics of Bayesian theory, Bayesian Networks and applications of the same to process safety hazards and risk assessment in the oil and gas industry Presents sequence of steps for setting up the model, populating the model with data and simulating the model for practical cases in a systematic manner Includes a comprehensive list on sources of failure data and tips on modelling and simulation of large and complex networks Presents modelling and simulation of loss of containment of actual equipment in oil and gas industry such as Separator, Storage tanks, Pipeline, Compressor and risk assessments Discusses case studies to demonstrate the practicability of use of Bayesian Network in routine risk assessments
Bayesian Networks In Fault Diagnosis: Practice And Application
Author: Baoping Cai
Publisher: World Scientific
ISBN: 9813271507
Category : Mathematics
Languages : en
Pages : 418
Book Description
Fault diagnosis is useful for technicians to detect, isolate, identify faults, and troubleshoot. Bayesian network (BN) is a probabilistic graphical model that effectively deals with various uncertainty problems. This model is increasingly utilized in fault diagnosis.This unique compendium presents bibliographical review on the use of BNs in fault diagnosis in the last decades with focus on engineering systems. Subsequently, eleven important issues in BN-based fault diagnosis methodology, such as BN structure modeling, BN parameter modeling, BN inference, fault identification, validation, and verification are discussed in various cases.Researchers, professionals, academics and graduate students will better understand the theory and application, and benefit those who are keen to develop real BN-based fault diagnosis system.
Publisher: World Scientific
ISBN: 9813271507
Category : Mathematics
Languages : en
Pages : 418
Book Description
Fault diagnosis is useful for technicians to detect, isolate, identify faults, and troubleshoot. Bayesian network (BN) is a probabilistic graphical model that effectively deals with various uncertainty problems. This model is increasingly utilized in fault diagnosis.This unique compendium presents bibliographical review on the use of BNs in fault diagnosis in the last decades with focus on engineering systems. Subsequently, eleven important issues in BN-based fault diagnosis methodology, such as BN structure modeling, BN parameter modeling, BN inference, fault identification, validation, and verification are discussed in various cases.Researchers, professionals, academics and graduate students will better understand the theory and application, and benefit those who are keen to develop real BN-based fault diagnosis system.
Advances in Artificial Intelligence
Author: Denilson Barbosa
Publisher: Springer
ISBN: 3319183567
Category : Computers
Languages : en
Pages : 373
Book Description
This book constitutes the refereed proceedings of the 28th Canadian Conference on Artificial Intelligence, Canadian AI 2015, held in Halifax, Nova Scotia, Canada, in June 2015.The 15 regular papers and 12 short papers presented together with 8 papers from the Graduate Student Symposium were carefully reviewed and selected from 81 submissions. The papers are organized in topical sections such as agents, uncertainty and games; AI applications; NLP, text and social media mining; data mining and machine learning.
Publisher: Springer
ISBN: 3319183567
Category : Computers
Languages : en
Pages : 373
Book Description
This book constitutes the refereed proceedings of the 28th Canadian Conference on Artificial Intelligence, Canadian AI 2015, held in Halifax, Nova Scotia, Canada, in June 2015.The 15 regular papers and 12 short papers presented together with 8 papers from the Graduate Student Symposium were carefully reviewed and selected from 81 submissions. The papers are organized in topical sections such as agents, uncertainty and games; AI applications; NLP, text and social media mining; data mining and machine learning.
Consumer-Driven Innovation in Food and Personal Care Products
Author: S R Jaeger
Publisher: Elsevier
ISBN: 1845699971
Category : Technology & Engineering
Languages : en
Pages : 697
Book Description
Experts from around the world present changes in the global marketplace and developments in research methodologies underpinning new product development (NPD) in this essential collection. The business and marketing aspects of NPD, sometimes neglected in books of this type, are addressed alongside methods for product testing.Trends, processes and perspectives in consumer-driven NPD in the food and personal care product industries are addressed in the opening chapters of the book. Specific topics include evolution in food retailing and advances in concept research. Hedonic testing is the focus of the next section. Different viewpoints on consumer research methods and statistics for NPD are reviewed in later chapters. The final part of the book looks towards the future of innovation, covering the implications for NPD of topics such as human genetic variation in taste perception and neuroimaging.Several chapters are not standard scientific articles. Rather they are written records of conversations between two people on a particular topic related to consumer-driven innovation in foods and personal care products. In them the interviewees speak freely about their views and experiences in NPD, providing unique insights.Consumer-driven innovation in food and personal care products will broaden readers' understanding of the many approaches available to NPD personnel and ways in which they can be used to support innovation activities. - Provides expert insight into the changes in the global market place and developments in research methodologies underpinning NPD - Examines the business and marketing aspects of NPD, sometimes neglected in books of this type, are addressed alongside methods for product testing - Chapters review the different viewpoints on consumer research methods and statistics for NPD
Publisher: Elsevier
ISBN: 1845699971
Category : Technology & Engineering
Languages : en
Pages : 697
Book Description
Experts from around the world present changes in the global marketplace and developments in research methodologies underpinning new product development (NPD) in this essential collection. The business and marketing aspects of NPD, sometimes neglected in books of this type, are addressed alongside methods for product testing.Trends, processes and perspectives in consumer-driven NPD in the food and personal care product industries are addressed in the opening chapters of the book. Specific topics include evolution in food retailing and advances in concept research. Hedonic testing is the focus of the next section. Different viewpoints on consumer research methods and statistics for NPD are reviewed in later chapters. The final part of the book looks towards the future of innovation, covering the implications for NPD of topics such as human genetic variation in taste perception and neuroimaging.Several chapters are not standard scientific articles. Rather they are written records of conversations between two people on a particular topic related to consumer-driven innovation in foods and personal care products. In them the interviewees speak freely about their views and experiences in NPD, providing unique insights.Consumer-driven innovation in food and personal care products will broaden readers' understanding of the many approaches available to NPD personnel and ways in which they can be used to support innovation activities. - Provides expert insight into the changes in the global market place and developments in research methodologies underpinning NPD - Examines the business and marketing aspects of NPD, sometimes neglected in books of this type, are addressed alongside methods for product testing - Chapters review the different viewpoints on consumer research methods and statistics for NPD