Bayesian Analysis of Stochastic Process Models

Bayesian Analysis of Stochastic Process Models PDF Author: David Insua
Publisher: John Wiley & Sons
ISBN: 1118304039
Category : Mathematics
Languages : en
Pages : 315

Get Book Here

Book Description
Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models. Key features: Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment. Provides a thorough introduction for research students. Computational tools to deal with complex problems are illustrated along with real life case studies Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.

Bayesian Analysis of Stochastic Process Models

Bayesian Analysis of Stochastic Process Models PDF Author: David Insua
Publisher: John Wiley & Sons
ISBN: 1118304039
Category : Mathematics
Languages : en
Pages : 315

Get Book Here

Book Description
Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models. Key features: Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment. Provides a thorough introduction for research students. Computational tools to deal with complex problems are illustrated along with real life case studies Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.

Financial Risk Management with Bayesian Estimation of GARCH Models

Financial Risk Management with Bayesian Estimation of GARCH Models PDF Author: David Ardia
Publisher: Springer Science & Business Media
ISBN: 3540786570
Category : Business & Economics
Languages : en
Pages : 206

Get Book Here

Book Description
This book presents in detail methodologies for the Bayesian estimation of sing- regime and regime-switching GARCH models. These models are widespread and essential tools in n ancial econometrics and have, until recently, mainly been estimated using the classical Maximum Likelihood technique. As this study aims to demonstrate, the Bayesian approach o ers an attractive alternative which enables small sample results, robust estimation, model discrimination and probabilistic statements on nonlinear functions of the model parameters. The author is indebted to numerous individuals for help in the preparation of this study. Primarily, I owe a great debt to Prof. Dr. Philippe J. Deschamps who inspired me to study Bayesian econometrics, suggested the subject, guided me under his supervision and encouraged my research. I would also like to thank Prof. Dr. Martin Wallmeier and my colleagues of the Department of Quantitative Economics, in particular Michael Beer, Roberto Cerratti and Gilles Kaltenrieder, for their useful comments and discussions. I am very indebted to my friends Carlos Ord as Criado, Julien A. Straubhaar, J er ^ ome Ph. A. Taillard and Mathieu Vuilleumier, for their support in the elds of economics, mathematics and statistics. Thanks also to my friend Kevin Barnes who helped with my English in this work. Finally, I am greatly indebted to my parents and grandparents for their support and encouragement while I was struggling with the writing of this thesis.

Bayesian Risk Management

Bayesian Risk Management PDF Author: Matt Sekerke
Publisher: John Wiley & Sons
ISBN: 1118708601
Category : Business & Economics
Languages : en
Pages : 228

Get Book Here

Book Description
A risk measurement and management framework that takes model risk seriously Most financial risk models assume the future will look like the past, but effective risk management depends on identifying fundamental changes in the marketplace as they occur. Bayesian Risk Management details a more flexible approach to risk management, and provides tools to measure financial risk in a dynamic market environment. This book opens discussion about uncertainty in model parameters, model specifications, and model-driven forecasts in a way that standard statistical risk measurement does not. And unlike current machine learning-based methods, the framework presented here allows you to measure risk in a fully-Bayesian setting without losing the structure afforded by parametric risk and asset-pricing models. Recognize the assumptions embodied in classical statistics Quantify model risk along multiple dimensions without backtesting Model time series without assuming stationarity Estimate state-space time series models online with simulation methods Uncover uncertainty in workhorse risk and asset-pricing models Embed Bayesian thinking about risk within a complex organization Ignoring uncertainty in risk modeling creates an illusion of mastery and fosters erroneous decision-making. Firms who ignore the many dimensions of model risk measure too little risk, and end up taking on too much. Bayesian Risk Management provides a roadmap to better risk management through more circumspect measurement, with comprehensive treatment of model uncertainty.

Model Risk In Financial Markets: From Financial Engineering To Risk Management

Model Risk In Financial Markets: From Financial Engineering To Risk Management PDF Author: Radu Sebastian Tunaru
Publisher: World Scientific
ISBN: 9814663425
Category : Business & Economics
Languages : en
Pages : 382

Get Book Here

Book Description
The financial systems in most developed countries today build up a large amount of model risk on a daily basis. However, this is not particularly visible as the financial risk management agenda is still dominated by the subprime-liquidity crisis, the sovereign crises, and other major political events. Losses caused by model risk are hard to identify and even when they are internally identified, as such, they are most likely to be classified as normal losses due to market evolution.Model Risk in Financial Markets: From Financial Engineering to Risk Management seeks to change the current perspective on model innovation, implementation and validation. This book presents a wide perspective on model risk related to financial markets, running the gamut from financial engineering to risk management, from financial mathematics to financial statistics. It combines theory and practice, both the classical and modern concepts being introduced for financial modelling. Quantitative finance is a relatively new area of research and much has been written on various directions of research and industry applications. In this book the reader gradually learns to develop a critical view on the fundamental theories and new models being proposed.

Applied Bayesian Modelling

Applied Bayesian Modelling PDF Author: Peter Congdon
Publisher: John Wiley & Sons
ISBN: 1118895053
Category : Mathematics
Languages : en
Pages : 464

Get Book Here

Book Description
This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBUGS and OPENBUGS. This feature continues in the new edition along with examples using R to broaden appeal and for completeness of coverage.

Bayesian Methods in Finance

Bayesian Methods in Finance PDF Author: Svetlozar T. Rachev
Publisher: John Wiley & Sons
ISBN: 0470249242
Category : Business & Economics
Languages : en
Pages : 351

Get Book Here

Book Description
Bayesian Methods in Finance provides a detailed overview of the theory of Bayesian methods and explains their real-world applications to financial modeling. While the principles and concepts explained throughout the book can be used in financial modeling and decision making in general, the authors focus on portfolio management and market risk management—since these are the areas in finance where Bayesian methods have had the greatest penetration to date.

Handbook of Quantitative Finance and Risk Management

Handbook of Quantitative Finance and Risk Management PDF Author: Cheng-Few Lee
Publisher: Springer Science & Business Media
ISBN: 0387771174
Category : Business & Economics
Languages : en
Pages : 1700

Get Book Here

Book Description
Quantitative finance is a combination of economics, accounting, statistics, econometrics, mathematics, stochastic process, and computer science and technology. Increasingly, the tools of financial analysis are being applied to assess, monitor, and mitigate risk, especially in the context of globalization, market volatility, and economic crisis. This two-volume handbook, comprised of over 100 chapters, is the most comprehensive resource in the field to date, integrating the most current theory, methodology, policy, and practical applications. Showcasing contributions from an international array of experts, the Handbook of Quantitative Finance and Risk Management is unparalleled in the breadth and depth of its coverage. Volume 1 presents an overview of quantitative finance and risk management research, covering the essential theories, policies, and empirical methodologies used in the field. Chapters provide in-depth discussion of portfolio theory and investment analysis. Volume 2 covers options and option pricing theory and risk management. Volume 3 presents a wide variety of models and analytical tools. Throughout, the handbook offers illustrative case examples, worked equations, and extensive references; additional features include chapter abstracts, keywords, and author and subject indices. From "arbitrage" to "yield spreads," the Handbook of Quantitative Finance and Risk Management will serve as an essential resource for academics, educators, students, policymakers, and practitioners.

Derivatives

Derivatives PDF Author: Jiří Witzany
Publisher: Springer Nature
ISBN: 3030517519
Category : Business & Economics
Languages : en
Pages : 381

Get Book Here

Book Description
This book helps students, researchers and quantitative finance practitioners to understand both basic and advanced topics in the valuation and modeling of financial and commodity derivatives, their institutional framework and risk management. It provides an overview of the new regulatory requirements such as Basel III, the Fundamental Review of the Trading Book (FRTB), Interest Rate Risk of the Banking Book (IRRBB), or the Internal Capital Assessment Process (ICAAP). The reader will also find a detailed treatment of counterparty credit risk, stochastic volatility estimation methods such as MCMC and Particle Filters, and the concepts of model-free volatility, VIX index definition and the related volatility trading. The book can also be used as a teaching material for university derivatives and financial engineering courses.

Mathematical Analysis and Applications in Modeling

Mathematical Analysis and Applications in Modeling PDF Author: Priti Kumar Roy
Publisher: Springer Nature
ISBN: 9811504229
Category : Mathematics
Languages : en
Pages : 518

Get Book Here

Book Description
This book collects select papers presented at the “International Conference on Mathematical Analysis and Application in Modeling,” held at Jadavpur University, Kolkata, India, on 9–12 January 2018. It discusses new results in cutting-edge areas of several branches of mathematics and applications, including analysis, topology, dynamical systems (nonlinear, topological), mathematical modeling, optimization and mathematical biology. The conference has emerged as a powerful forum, bringing together leading academics, industry experts and researchers, and offering them a venue to discuss, interact and collaborate in order to stimulate the advancement of mathematics and its industrial applications.

Stochastic Volatility and Realized Stochastic Volatility Models

Stochastic Volatility and Realized Stochastic Volatility Models PDF Author: Makoto Takahashi
Publisher: Springer Nature
ISBN: 981990935X
Category : Business & Economics
Languages : en
Pages : 120

Get Book Here

Book Description
This treatise delves into the latest advancements in stochastic volatility models, highlighting the utilization of Markov chain Monte Carlo simulations for estimating model parameters and forecasting the volatility and quantiles of financial asset returns. The modeling of financial time series volatility constitutes a crucial aspect of finance, as it plays a vital role in predicting return distributions and managing risks. Among the various econometric models available, the stochastic volatility model has been a popular choice, particularly in comparison to other models, such as GARCH models, as it has demonstrated superior performance in previous empirical studies in terms of fit, forecasting volatility, and evaluating tail risk measures such as Value-at-Risk and Expected Shortfall. The book also explores an extension of the basic stochastic volatility model, incorporating a skewed return error distribution and a realized volatility measurement equation. The concept of realized volatility, a newly established estimator of volatility using intraday returns data, is introduced, and a comprehensive description of the resulting realized stochastic volatility model is provided. The text contains a thorough explanation of several efficient sampling algorithms for latent log volatilities, as well as an illustration of parameter estimation and volatility prediction through empirical studies utilizing various asset return data, including the yen/US dollar exchange rate, the Dow Jones Industrial Average, and the Nikkei 225 stock index. This publication is highly recommended for readers with an interest in the latest developments in stochastic volatility models and realized stochastic volatility models, particularly in regards to financial risk management.