Author: Ioannis Markos Roussos
Publisher: World Scientific
ISBN: 9811239878
Category : Mathematics
Languages : en
Pages : 501
Book Description
The aim of this book is to provide a complete synthetic exposition of plane isometries, similarities and inversions to readers who are interested in studying, teaching, and using this material.The topics developed in this book can provide new proofs and solutions to many results and problems of classical geometry, which are presented with different proofs in the literature. Their applications are numerous and some, such as the Steiner Chains and Point, are useful to engineers.The book contains many good examples, important applications and numerous exercises of various level and difficulty, which are classified in the three groups of: general exercises, geometrical constructions, and geometrical loci. Some lengthy exercises or groups of related exercises can be viewed as projects. On the basis of the above, this book, besides Classical Geometry, is an important addition to Mathematics Education.
Basic Lessons On Isometries, Similarities And Inversions In The Euclidean Plane: A Synthetic Approach
Author: Ioannis Markos Roussos
Publisher: World Scientific
ISBN: 9811239878
Category : Mathematics
Languages : en
Pages : 501
Book Description
The aim of this book is to provide a complete synthetic exposition of plane isometries, similarities and inversions to readers who are interested in studying, teaching, and using this material.The topics developed in this book can provide new proofs and solutions to many results and problems of classical geometry, which are presented with different proofs in the literature. Their applications are numerous and some, such as the Steiner Chains and Point, are useful to engineers.The book contains many good examples, important applications and numerous exercises of various level and difficulty, which are classified in the three groups of: general exercises, geometrical constructions, and geometrical loci. Some lengthy exercises or groups of related exercises can be viewed as projects. On the basis of the above, this book, besides Classical Geometry, is an important addition to Mathematics Education.
Publisher: World Scientific
ISBN: 9811239878
Category : Mathematics
Languages : en
Pages : 501
Book Description
The aim of this book is to provide a complete synthetic exposition of plane isometries, similarities and inversions to readers who are interested in studying, teaching, and using this material.The topics developed in this book can provide new proofs and solutions to many results and problems of classical geometry, which are presented with different proofs in the literature. Their applications are numerous and some, such as the Steiner Chains and Point, are useful to engineers.The book contains many good examples, important applications and numerous exercises of various level and difficulty, which are classified in the three groups of: general exercises, geometrical constructions, and geometrical loci. Some lengthy exercises or groups of related exercises can be viewed as projects. On the basis of the above, this book, besides Classical Geometry, is an important addition to Mathematics Education.
Geometric Transformations
Author: Răzvan Gelca
Publisher: Springer Nature
ISBN: 3030891178
Category : Mathematics
Languages : en
Pages : 581
Book Description
This textbook teaches the transformations of plane Euclidean geometry through problems, offering a transformation-based perspective on problems that have appeared in recent years at mathematics competitions around the globe, as well as on some classical examples and theorems. It is based on the combined teaching experience of the authors (coaches of several Mathematical Olympiad teams in Brazil, Romania and the USA) and presents comprehensive theoretical discussions of isometries, homotheties and spiral similarities, and inversions, all illustrated by examples and followed by myriad problems left for the reader to solve. These problems were carefully selected and arranged to introduce students to the topics by gradually moving from basic to expert level. Most of them have appeared in competitions such as Mathematical Olympiads or in mathematical journals aimed at an audience interested in mathematics competitions, while some are fundamental facts of mathematics discussed in the framework of geometric transformations. The book offers a global view of the geometric content of today's mathematics competitions, bringing many new methods and ideas to the attention of the public. Talented high school and middle school students seeking to improve their problem-solving skills can benefit from this book, as well as high school and college instructors who want to add nonstandard questions to their courses. People who enjoy solving elementary math problems as a hobby will also enjoy this work.
Publisher: Springer Nature
ISBN: 3030891178
Category : Mathematics
Languages : en
Pages : 581
Book Description
This textbook teaches the transformations of plane Euclidean geometry through problems, offering a transformation-based perspective on problems that have appeared in recent years at mathematics competitions around the globe, as well as on some classical examples and theorems. It is based on the combined teaching experience of the authors (coaches of several Mathematical Olympiad teams in Brazil, Romania and the USA) and presents comprehensive theoretical discussions of isometries, homotheties and spiral similarities, and inversions, all illustrated by examples and followed by myriad problems left for the reader to solve. These problems were carefully selected and arranged to introduce students to the topics by gradually moving from basic to expert level. Most of them have appeared in competitions such as Mathematical Olympiads or in mathematical journals aimed at an audience interested in mathematics competitions, while some are fundamental facts of mathematics discussed in the framework of geometric transformations. The book offers a global view of the geometric content of today's mathematics competitions, bringing many new methods and ideas to the attention of the public. Talented high school and middle school students seeking to improve their problem-solving skills can benefit from this book, as well as high school and college instructors who want to add nonstandard questions to their courses. People who enjoy solving elementary math problems as a hobby will also enjoy this work.
Transformation Geometry
Author: Jagat Narain Kapur
Publisher:
ISBN:
Category : Geometry, Algebraic
Languages : en
Pages : 278
Book Description
Publisher:
ISBN:
Category : Geometry, Algebraic
Languages : en
Pages : 278
Book Description
Exploring Geometry
Author: Michael Hvidsten
Publisher: CRC Press
ISBN: 1498760988
Category : Mathematics
Languages : en
Pages : 532
Book Description
Exploring Geometry, Second Edition promotes student engagement with the beautiful ideas of geometry. Every major concept is introduced in its historical context and connects the idea with real-life. A system of experimentation followed by rigorous explanation and proof is central. Exploratory projects play an integral role in this text. Students develop a better sense of how to prove a result and visualize connections between statements, making these connections real. They develop the intuition needed to conjecture a theorem and devise a proof of what they have observed. Features: Second edition of a successful textbook for the first undergraduate course Every major concept is introduced in its historical context and connects the idea with real life Focuses on experimentation Projects help enhance student learning All major software programs can be used; free software from author
Publisher: CRC Press
ISBN: 1498760988
Category : Mathematics
Languages : en
Pages : 532
Book Description
Exploring Geometry, Second Edition promotes student engagement with the beautiful ideas of geometry. Every major concept is introduced in its historical context and connects the idea with real-life. A system of experimentation followed by rigorous explanation and proof is central. Exploratory projects play an integral role in this text. Students develop a better sense of how to prove a result and visualize connections between statements, making these connections real. They develop the intuition needed to conjecture a theorem and devise a proof of what they have observed. Features: Second edition of a successful textbook for the first undergraduate course Every major concept is introduced in its historical context and connects the idea with real life Focuses on experimentation Projects help enhance student learning All major software programs can be used; free software from author
Treatise of Plane Geometry Through Geometric Algebra
Author: Ramón González Calvet
Publisher: Treatise of Plane Geometry
ISBN: 8461191498
Category : Geometry, Algebraic
Languages : en
Pages : 43
Book Description
Publisher: Treatise of Plane Geometry
ISBN: 8461191498
Category : Geometry, Algebraic
Languages : en
Pages : 43
Book Description
Variations on a Theme of Borel
Author: Shmuel Weinberger
Publisher: Cambridge University Press
ISBN: 1108916848
Category : Mathematics
Languages : en
Pages : 366
Book Description
In the middle of the last century, after hearing a talk of Mostow on one of his rigidity theorems, Borel conjectured in a letter to Serre a purely topological version of rigidity for aspherical manifolds (i.e. manifolds with contractible universal covers). The Borel conjecture is now one of the central problems of topology with many implications for manifolds that need not be aspherical. Since then, the theory of rigidity has vastly expanded in both precision and scope. This book rethinks the implications of accepting his heuristic as a source of ideas. Doing so leads to many variants of the original conjecture - some true, some false, and some that remain conjectural. The author explores this collection of ideas, following them where they lead whether into rigidity theory in its differential geometric and representation theoretic forms, or geometric group theory, metric geometry, global analysis, algebraic geometry, K-theory, or controlled topology.
Publisher: Cambridge University Press
ISBN: 1108916848
Category : Mathematics
Languages : en
Pages : 366
Book Description
In the middle of the last century, after hearing a talk of Mostow on one of his rigidity theorems, Borel conjectured in a letter to Serre a purely topological version of rigidity for aspherical manifolds (i.e. manifolds with contractible universal covers). The Borel conjecture is now one of the central problems of topology with many implications for manifolds that need not be aspherical. Since then, the theory of rigidity has vastly expanded in both precision and scope. This book rethinks the implications of accepting his heuristic as a source of ideas. Doing so leads to many variants of the original conjecture - some true, some false, and some that remain conjectural. The author explores this collection of ideas, following them where they lead whether into rigidity theory in its differential geometric and representation theoretic forms, or geometric group theory, metric geometry, global analysis, algebraic geometry, K-theory, or controlled topology.
Discovering Geometry
Author: Michael Serra
Publisher:
ISBN: 9781559535885
Category : Mathematics
Languages : en
Pages : 34
Book Description
Publisher:
ISBN: 9781559535885
Category : Mathematics
Languages : en
Pages : 34
Book Description
Notes on Geometry
Author: Elmer G. Rees
Publisher: Springer Science & Business Media
ISBN: 3642617778
Category : Mathematics
Languages : en
Pages : 119
Book Description
In recent years, geometry has played a lesser role in undergraduate courses than it has ever done. Nevertheless, it still plays a leading role in mathematics at a higher level. Its central role in the history of mathematics has never been disputed. It is important, therefore, to introduce some geometry into university syllabuses. There are several ways of doing this, it can be incorporated into existing courses that are primarily devoted to other topics, it can be taught at a first year level or it can be taught in higher level courses devoted to differential geometry or to more classical topics. These notes are intended to fill a rather obvious gap in the literature. It treats the classical topics of Euclidean, projective and hyperbolic geometry but uses the material commonly taught to undergraduates: linear algebra, group theory, metric spaces and complex analysis. The notes are based on a course whose aim was two fold, firstly, to introduce the students to some geometry and secondly to deepen their understanding of topics that they have already met. What is required from the earlier material is a familiarity with the main ideas, specific topics that are used are usually redone.
Publisher: Springer Science & Business Media
ISBN: 3642617778
Category : Mathematics
Languages : en
Pages : 119
Book Description
In recent years, geometry has played a lesser role in undergraduate courses than it has ever done. Nevertheless, it still plays a leading role in mathematics at a higher level. Its central role in the history of mathematics has never been disputed. It is important, therefore, to introduce some geometry into university syllabuses. There are several ways of doing this, it can be incorporated into existing courses that are primarily devoted to other topics, it can be taught at a first year level or it can be taught in higher level courses devoted to differential geometry or to more classical topics. These notes are intended to fill a rather obvious gap in the literature. It treats the classical topics of Euclidean, projective and hyperbolic geometry but uses the material commonly taught to undergraduates: linear algebra, group theory, metric spaces and complex analysis. The notes are based on a course whose aim was two fold, firstly, to introduce the students to some geometry and secondly to deepen their understanding of topics that they have already met. What is required from the earlier material is a familiarity with the main ideas, specific topics that are used are usually redone.
Structure and Equivalence
Author: Neil Dewar
Publisher: Cambridge University Press
ISBN: 1108910467
Category : Philosophy
Languages : en
Pages : 82
Book Description
This Element explores what it means for two theories in physics to be equivalent (or inequivalent), and what lessons can be drawn about their structure as a result. It does so through a twofold approach. On the one hand, it provides a synoptic overview of the logical tools that have been employed in recent philosophy of physics to explore these topics: definition, translation, Ramsey sentences, and category theory. On the other, it provides a detailed case study of how these ideas may be applied to understand the dynamical and spatiotemporal structure of Newtonian mechanics - in particular, in light of the symmetries of Newtonian theory. In so doing, it brings together a great deal of exciting recent work in the literature, and is sure to be a valuable companion for all those interested in these topics.
Publisher: Cambridge University Press
ISBN: 1108910467
Category : Philosophy
Languages : en
Pages : 82
Book Description
This Element explores what it means for two theories in physics to be equivalent (or inequivalent), and what lessons can be drawn about their structure as a result. It does so through a twofold approach. On the one hand, it provides a synoptic overview of the logical tools that have been employed in recent philosophy of physics to explore these topics: definition, translation, Ramsey sentences, and category theory. On the other, it provides a detailed case study of how these ideas may be applied to understand the dynamical and spatiotemporal structure of Newtonian mechanics - in particular, in light of the symmetries of Newtonian theory. In so doing, it brings together a great deal of exciting recent work in the literature, and is sure to be a valuable companion for all those interested in these topics.
Technology in Mathematics Teaching
Author: Gilles Aldon
Publisher: Springer
ISBN: 3030197417
Category : Education
Languages : en
Pages : 335
Book Description
This book comprises chapters featuring a state of the art of research on digital technology in mathematics education. The chapters are extended versions of a selection of papers from the Proceedings of the 13th International Conference on Technology in Mathematics Teaching (ICTMT-13), which was held in Lyon, France, from July 3rd to 6th. ICTMT-13 gathered together over one hundred participants from twenty countries sharing research and empirical results on the topical issues of technology and its potential to improve mathematics teaching and learning. The chapters are organised into 4 themed parts, namely assessment in mathematics education and technology, which was the main focus of the conference, innovative technology and approaches to mathematics education, teacher education and professional development toward the technology use, and mathematics teaching and learning experiences with technology. In 13 chapters contained in the book, prominent mathematics educators from all over the world present the most recent theoretical and practical advances on these themes This book is of particular interest to researchers, teachers, teacher educators and other actors interested in digital technology in mathematics education.
Publisher: Springer
ISBN: 3030197417
Category : Education
Languages : en
Pages : 335
Book Description
This book comprises chapters featuring a state of the art of research on digital technology in mathematics education. The chapters are extended versions of a selection of papers from the Proceedings of the 13th International Conference on Technology in Mathematics Teaching (ICTMT-13), which was held in Lyon, France, from July 3rd to 6th. ICTMT-13 gathered together over one hundred participants from twenty countries sharing research and empirical results on the topical issues of technology and its potential to improve mathematics teaching and learning. The chapters are organised into 4 themed parts, namely assessment in mathematics education and technology, which was the main focus of the conference, innovative technology and approaches to mathematics education, teacher education and professional development toward the technology use, and mathematics teaching and learning experiences with technology. In 13 chapters contained in the book, prominent mathematics educators from all over the world present the most recent theoretical and practical advances on these themes This book is of particular interest to researchers, teachers, teacher educators and other actors interested in digital technology in mathematics education.