Basic Bundle Theory and K-Cohomology Invariants

Basic Bundle Theory and K-Cohomology Invariants PDF Author: Dale Husemöller
Publisher: Springer Science & Business Media
ISBN: 3540749551
Category : Mathematics
Languages : en
Pages : 344

Get Book Here

Book Description
Based on several recent courses given to mathematical physics students, this volume is an introduction to bundle theory. It aims to provide newcomers to the field with solid foundations in topological K-theory. A fundamental theme, emphasized in the book, centers around the gluing of local bundle data related to bundles into a global object. One renewed motivation for studying this subject, comes from quantum field theory, where topological invariants play an important role.

Basic Bundle Theory and K-Cohomology Invariants

Basic Bundle Theory and K-Cohomology Invariants PDF Author: Dale Husemöller
Publisher: Springer Science & Business Media
ISBN: 3540749551
Category : Mathematics
Languages : en
Pages : 344

Get Book Here

Book Description
Based on several recent courses given to mathematical physics students, this volume is an introduction to bundle theory. It aims to provide newcomers to the field with solid foundations in topological K-theory. A fundamental theme, emphasized in the book, centers around the gluing of local bundle data related to bundles into a global object. One renewed motivation for studying this subject, comes from quantum field theory, where topological invariants play an important role.

Basic Bundle Theory and K-Cohomology Invariants

Basic Bundle Theory and K-Cohomology Invariants PDF Author: Dale Husemöller
Publisher: Springer
ISBN: 9783540843863
Category : Mathematics
Languages : en
Pages : 340

Get Book Here

Book Description
Based on several recent courses given to mathematical physics students, this volume is an introduction to bundle theory. It aims to provide newcomers to the field with solid foundations in topological K-theory. A fundamental theme, emphasized in the book, centers around the gluing of local bundle data related to bundles into a global object. One renewed motivation for studying this subject, comes from quantum field theory, where topological invariants play an important role.

Basic Bundle Theory and K-Cohomology Invariants

Basic Bundle Theory and K-Cohomology Invariants PDF Author: Dale Husemöller
Publisher: Springer
ISBN: 354074956X
Category : Mathematics
Languages : en
Pages : 344

Get Book Here

Book Description
Based on several recent courses given to mathematical physics students, this volume is an introduction to bundle theory. It aims to provide newcomers to the field with solid foundations in topological K-theory. A fundamental theme, emphasized in the book, centers around the gluing of local bundle data related to bundles into a global object. One renewed motivation for studying this subject, comes from quantum field theory, where topological invariants play an important role.

K-theory

K-theory PDF Author: Michael Atiyah
Publisher: CRC Press
ISBN: 0429973179
Category : Mathematics
Languages : en
Pages : 181

Get Book Here

Book Description
These notes are based on the course of lectures I gave at Harvard in the fall of 1964. They constitute a self-contained account of vector bundles and K-theory assuming only the rudiments of point-set topology and linear algebra. One of the features of the treatment is that no use is made of ordinary homology or cohomology theory. In fact, rational cohomology is defined in terms of K-theory.The theory is taken as far as the solution of the Hopf invariant problem and a start is mode on the J-homomorphism. In addition to the lecture notes proper, two papers of mine published since 1964 have been reproduced at the end. The first, dealing with operations, is a natural supplement to the material in Chapter III. It provides an alternative approach to operations which is less slick but more fundamental than the Grothendieck method of Chapter III, and it relates operations and filtration. Actually, the lectures deal with compact spaces, not cell-complexes, and so the skeleton-filtration does not figure in the notes. The second paper provides a new approach to K-theory and so fills an obvious gap in the lecture notes.

L2-Invariants: Theory and Applications to Geometry and K-Theory

L2-Invariants: Theory and Applications to Geometry and K-Theory PDF Author: Wolfgang Lück
Publisher: Springer Science & Business Media
ISBN: 3662046873
Category : Mathematics
Languages : en
Pages : 604

Get Book Here

Book Description
In algebraic topology some classical invariants - such as Betti numbers and Reidemeister torsion - are defined for compact spaces and finite group actions. They can be generalized using von Neumann algebras and their traces, and applied also to non-compact spaces and infinite groups. These new L2-invariants contain very interesting and novel information and can be applied to problems arising in topology, K-Theory, differential geometry, non-commutative geometry and spectral theory. The book, written in an accessible manner, presents a comprehensive introduction to this area of research, as well as its most recent results and developments.

Fibre Bundles

Fibre Bundles PDF Author: D. Husemöller
Publisher: Springer Science & Business Media
ISBN: 1475740085
Category : Mathematics
Languages : en
Pages : 333

Get Book Here

Book Description
The notion of a fibre bundle first arose out of questions posed in the 1930s on the topology and geometry of manifolds. By the year 1950 the defini tion of fibre bundle had been clearly formulated, the homotopy classifica tion of fibre bundles achieved, and the theory of characteristic classes of fibre bundles developed by several mathematicians, Chern, Pontrjagin, Stiefel, and Whitney. Steenrod's book, which appeared in 1950, gave a coherent treatment of the subject up to that time. About 1955 Milnor gave a construction of a universal fibre bundle for any topological group. This construction is also included in Part I along with an elementary proof that the bundle is universal. During the five years from 1950 to 1955, Hirzebruch clarified the notion of characteristic class and used it to prove a general Riemann-Roch theorem for algebraic varieties. This was published in his Ergebnisse Monograph. A systematic development of characteristic classes and their applications to manifolds is given in Part III and is based on the approach of Hirze bruch as modified by Grothendieck.

Lecture Notes on Motivic Cohomology

Lecture Notes on Motivic Cohomology PDF Author: Carlo Mazza
Publisher: American Mathematical Soc.
ISBN: 9780821838471
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
The notion of a motive is an elusive one, like its namesake "the motif" of Cezanne's impressionist method of painting. Its existence was first suggested by Grothendieck in 1964 as the underlying structure behind the myriad cohomology theories in Algebraic Geometry. We now know that there is a triangulated theory of motives, discovered by Vladimir Voevodsky, which suffices for the development of a satisfactory Motivic Cohomology theory. However, the existence of motives themselves remains conjectural. This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings such as Milnor K-theory, etale cohomology, and Chow groups. The book is divided into lectures, grouped in six parts. The first part presents the definition of Motivic Cohomology, based upon the notion of presheaves with transfers. Some elementary comparison theorems are given in this part. The theory of (etale, Nisnevich, and Zariski) sheaves with transfers is developed in parts two, three, and six, respectively. The theoretical core of the book is the fourth part, presenting the triangulated category of motives. Finally, the comparison with higher Chow groups is developed in part five. The lecture notes format is designed for the book to be read by an advanced graduate student or an expert in a related field. The lectures roughly correspond to one-hour lectures given by Voevodsky during the course he gave at the Institute for Advanced Study in Princeton on this subject in 1999-2000. In addition, many of the original proofs have been simplified and improved so that this book will also be a useful tool for research mathematicians. Information for our distributors: Titles in this series are copublished with the Clay Mathematics Institute (Cambridge, MA).

Basic Noncommutative Geometry

Basic Noncommutative Geometry PDF Author: Masoud Khalkhali
Publisher: European Mathematical Society
ISBN: 9783037190616
Category : Mathematics
Languages : en
Pages : 244

Get Book Here

Book Description
"Basic Noncommutative Geometry provides an introduction to noncommutative geometry and some of its applications. The book can be used either as a textbook for a graduate course on the subject or for self-study. It will be useful for graduate students and researchers in mathematics and theoretical physics and all those who are interested in gaining an understanding of the subject. One feature of this book is the wealth of examples and exercises that help the reader to navigate through the subject. While background material is provided in the text and in several appendices, some familiarity with basic notions of functional analysis, algebraic topology, differential geometry and homological algebra at a first year graduate level is helpful. Developed by Alain Connes since the late 1970s, noncommutative geometry has found many applications to long-standing conjectures in topology and geometry and has recently made headways in theoretical physics and number theory. The book starts with a detailed description of some of the most pertinent algebra-geometry correspondences by casting geometric notions in algebraic terms, then proceeds in the second chapter to the idea of a noncommutative space and how it is constructed. The last two chapters deal with homological tools: cyclic cohomology and Connes-Chern characters in K-theory and K-homology, culminating in one commutative diagram expressing the equality of topological and analytic index in a noncommutative setting. Applications to integrality of noncommutative topological invariants are given as well."--Publisher's description.

A Mathematical Introduction to Conformal Field Theory

A Mathematical Introduction to Conformal Field Theory PDF Author: Martin Schottenloher
Publisher: Springer Science & Business Media
ISBN: 3540686258
Category : Science
Languages : en
Pages : 254

Get Book Here

Book Description
The first part of this book gives a self-contained and mathematically rigorous exposition of classical conformal symmetry in n dimensions and its quantization in two dimensions. The second part surveys some more advanced topics of conformal field theory.

Equivariant Poincaré Duality on G-Manifolds

Equivariant Poincaré Duality on G-Manifolds PDF Author: Alberto Arabia
Publisher: Springer Nature
ISBN: 3030704408
Category : Mathematics
Languages : en
Pages : 383

Get Book Here

Book Description
This book carefully presents a unified treatment of equivariant Poincaré duality in a wide variety of contexts, illuminating an area of mathematics that is often glossed over elsewhere. The approach used here allows the parallel treatment of both equivariant and nonequivariant cases. It also makes it possible to replace the usual field of coefficients for cohomology, the field of real numbers, with any field of arbitrary characteristic, and hence change (equivariant) de Rham cohomology to the usual singular (equivariant) cohomology . The book will be of interest to graduate students and researchers wanting to learn about the equivariant extension of tools familiar from non-equivariant differential geometry.