Author: KOJI SUGIOKA.
Publisher:
ISBN: 9783319695372
Category : Lasers in engineering
Languages : en
Pages :
Book Description
This handbook provides a comprehensive review of the entire field of laser micro and nano processing, including not only a detailed introduction to individual laser processing techniques but also the fundamentals of laser-matter interaction and lasers, optics, equipment, diagnostics, as well as monitoring and measurement techniques for laser processing. Consisting of 11 sections, each composed of 4 to 6 chapters written by leading experts in the relevant field. Each main part of the handbook is supervised by its own part editor(s) so that high-quality content as well as completeness are assured. The book provides essential scientific and technical information to researchers and engineers already working in the field as well as students and young scientists planning to work in the area in the future. Lasers found application in materials processing practically since their invention in 1960, and are currently used widely in manufacturing. The main driving force behind this fact is that the lasers can provide unique solutions in material processing with high quality, high efficiency, high flexibility, high resolution, versatility and low environmental load. Macro-processing based on thermal process using infrared lasers such as CO2 lasers has been the mainstream in the early stages, while research and development of micro- and nano-processing are becoming increasingly more active as short wavelength and/or short pulse width lasers have been developed. In particular, recent advances in ultrafast lasers have opened up a new avenue to laser material processing due to the capabilities of ultrahigh precision micro- and nanofabrication of diverse materials. This handbook is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of laser micro- and nanoengineering. This comprehensive source makes readers familiar with a broad spectrum of approaches to solve all relevant problems in science and technology. This handbook is the ultimate desk reference for all people working in the field.
Handbook of Laser Micro- and Nano-Engineering
Author: KOJI SUGIOKA.
Publisher:
ISBN: 9783319695372
Category : Lasers in engineering
Languages : en
Pages :
Book Description
This handbook provides a comprehensive review of the entire field of laser micro and nano processing, including not only a detailed introduction to individual laser processing techniques but also the fundamentals of laser-matter interaction and lasers, optics, equipment, diagnostics, as well as monitoring and measurement techniques for laser processing. Consisting of 11 sections, each composed of 4 to 6 chapters written by leading experts in the relevant field. Each main part of the handbook is supervised by its own part editor(s) so that high-quality content as well as completeness are assured. The book provides essential scientific and technical information to researchers and engineers already working in the field as well as students and young scientists planning to work in the area in the future. Lasers found application in materials processing practically since their invention in 1960, and are currently used widely in manufacturing. The main driving force behind this fact is that the lasers can provide unique solutions in material processing with high quality, high efficiency, high flexibility, high resolution, versatility and low environmental load. Macro-processing based on thermal process using infrared lasers such as CO2 lasers has been the mainstream in the early stages, while research and development of micro- and nano-processing are becoming increasingly more active as short wavelength and/or short pulse width lasers have been developed. In particular, recent advances in ultrafast lasers have opened up a new avenue to laser material processing due to the capabilities of ultrahigh precision micro- and nanofabrication of diverse materials. This handbook is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of laser micro- and nanoengineering. This comprehensive source makes readers familiar with a broad spectrum of approaches to solve all relevant problems in science and technology. This handbook is the ultimate desk reference for all people working in the field.
Publisher:
ISBN: 9783319695372
Category : Lasers in engineering
Languages : en
Pages :
Book Description
This handbook provides a comprehensive review of the entire field of laser micro and nano processing, including not only a detailed introduction to individual laser processing techniques but also the fundamentals of laser-matter interaction and lasers, optics, equipment, diagnostics, as well as monitoring and measurement techniques for laser processing. Consisting of 11 sections, each composed of 4 to 6 chapters written by leading experts in the relevant field. Each main part of the handbook is supervised by its own part editor(s) so that high-quality content as well as completeness are assured. The book provides essential scientific and technical information to researchers and engineers already working in the field as well as students and young scientists planning to work in the area in the future. Lasers found application in materials processing practically since their invention in 1960, and are currently used widely in manufacturing. The main driving force behind this fact is that the lasers can provide unique solutions in material processing with high quality, high efficiency, high flexibility, high resolution, versatility and low environmental load. Macro-processing based on thermal process using infrared lasers such as CO2 lasers has been the mainstream in the early stages, while research and development of micro- and nano-processing are becoming increasingly more active as short wavelength and/or short pulse width lasers have been developed. In particular, recent advances in ultrafast lasers have opened up a new avenue to laser material processing due to the capabilities of ultrahigh precision micro- and nanofabrication of diverse materials. This handbook is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of laser micro- and nanoengineering. This comprehensive source makes readers familiar with a broad spectrum of approaches to solve all relevant problems in science and technology. This handbook is the ultimate desk reference for all people working in the field.
Axial Aberrations of Lenses
Author: Edgar D. Tillyer
Publisher:
ISBN:
Category : Aberration
Languages : en
Pages : 30
Book Description
Publisher:
ISBN:
Category : Aberration
Languages : en
Pages : 30
Book Description
Aberrations of Optical Systems
Author: W.T Welford
Publisher: Routledge
ISBN: 1351469304
Category : Science
Languages : en
Pages : 304
Book Description
Although the subject of optical design as a branch of applied physics is over one hundred years old, the use of aberration theory has changed considerably. Aberrations of Optical Systems covers elementary optics and aberration theory of various optical systems, including the use of nonaxially symmetric systems and diffractive optical elements in complex designs, such as head-up displays and the increasing use of scanning systems with laser illumination. The book provides the complete range of mathematical tools, formulae, and derivations needed for understanding the process of optical design and for planning optical design programs. While the treatment is mainly based on geometrical optics, some excursions into physical optics are made, particularly in connection with the problems of optical tolerances.
Publisher: Routledge
ISBN: 1351469304
Category : Science
Languages : en
Pages : 304
Book Description
Although the subject of optical design as a branch of applied physics is over one hundred years old, the use of aberration theory has changed considerably. Aberrations of Optical Systems covers elementary optics and aberration theory of various optical systems, including the use of nonaxially symmetric systems and diffractive optical elements in complex designs, such as head-up displays and the increasing use of scanning systems with laser illumination. The book provides the complete range of mathematical tools, formulae, and derivations needed for understanding the process of optical design and for planning optical design programs. While the treatment is mainly based on geometrical optics, some excursions into physical optics are made, particularly in connection with the problems of optical tolerances.
Optical Engineering Fundamentals
Author: Bruce H. Walker
Publisher: SPIE Press
ISBN: 9780819427649
Category : Science
Languages : en
Pages : 366
Book Description
This text aims to expose students to the science of optics and optical engineering without the complications of advanced physics and mathematical theory.
Publisher: SPIE Press
ISBN: 9780819427649
Category : Science
Languages : en
Pages : 366
Book Description
This text aims to expose students to the science of optics and optical engineering without the complications of advanced physics and mathematical theory.
Introduction to Lens Design
Author: José Sasián
Publisher: Cambridge University Press
ISBN: 1108494323
Category : Medical
Languages : en
Pages : 251
Book Description
A concise introduction to lens design, including the fundamental theory, concepts, methods and tools used in the field. Covering all the essential concepts and providing suggestions for further reading at the end of each chapter, this book is an essential resource for graduate students working in optics and photonics.
Publisher: Cambridge University Press
ISBN: 1108494323
Category : Medical
Languages : en
Pages : 251
Book Description
A concise introduction to lens design, including the fundamental theory, concepts, methods and tools used in the field. Covering all the essential concepts and providing suggestions for further reading at the end of each chapter, this book is an essential resource for graduate students working in optics and photonics.
Spherical Aberration in Thin Lenses
Author: T. Townsend Smith
Publisher:
ISBN:
Category : Aberration
Languages : en
Pages : 26
Book Description
Publisher:
ISBN:
Category : Aberration
Languages : en
Pages : 26
Book Description
Field Guide to Microscopy
Author: Tomasz S. Tkaczyk
Publisher: SPIE-International Society for Optical Engineering
ISBN:
Category : Science
Languages : en
Pages : 162
Book Description
This guide provides extensive coverage of microscopic imaging principles. After reviewing the main principles of image formation, diffraction, interference, and polarization used in microscopy, this guide describes the most widely applied microscope configurations and applications. It also covers major system components, including light sources, illumination layouts, microscope optics, and image detection electronics. This guide also provides a comprehensive overview of microscopy techniques, including bright field and dark field imaging, contrast enhancement methods (such as phase and amplitude contrast), DIC, polarization, and fluorescence microscopy. In addition, it describes scanning techniques (such as confocal and multiphoton imaging points); new trends in super-resolution methods (such as 4Pi microscopy, STED, STORM, and structured illumination); and array microscopy, CARS, and SPIM.
Publisher: SPIE-International Society for Optical Engineering
ISBN:
Category : Science
Languages : en
Pages : 162
Book Description
This guide provides extensive coverage of microscopic imaging principles. After reviewing the main principles of image formation, diffraction, interference, and polarization used in microscopy, this guide describes the most widely applied microscope configurations and applications. It also covers major system components, including light sources, illumination layouts, microscope optics, and image detection electronics. This guide also provides a comprehensive overview of microscopy techniques, including bright field and dark field imaging, contrast enhancement methods (such as phase and amplitude contrast), DIC, polarization, and fluorescence microscopy. In addition, it describes scanning techniques (such as confocal and multiphoton imaging points); new trends in super-resolution methods (such as 4Pi microscopy, STED, STORM, and structured illumination); and array microscopy, CARS, and SPIM.
Introduction to Aberrations in Optical Imaging Systems
Author: José Sasián
Publisher: Cambridge University Press
ISBN: 1107006333
Category : Science
Languages : en
Pages : 285
Book Description
An accessible, well presented introduction to the theory of optical aberrations, covering key topics that are often missing from comparable books.
Publisher: Cambridge University Press
ISBN: 1107006333
Category : Science
Languages : en
Pages : 285
Book Description
An accessible, well presented introduction to the theory of optical aberrations, covering key topics that are often missing from comparable books.
Lens Design Fundamentals
Author: Rudolf Kingslake
Publisher: Academic Press
ISBN: 0080921566
Category : Technology & Engineering
Languages : en
Pages : 570
Book Description
- Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978 - Strong emphasis on how to effectively use software design packages, indispensable to today's lens designer - Many new lens design problems and examples – ranging from simple lenses to complex zoom lenses and mirror systems – give insight for both the newcomer and specialist in the field Rudolf Kingslake is regarded as the American father of lens design; his book, not revised since its publication in 1978, is viewed as a classic in the field. Naturally, the area has developed considerably since the book was published, the most obvious changes being the availability of powerful lens design software packages, theoretical advances, and new surface fabrication technologies. This book provides the skills and knowledge to move into the exciting world of contemporary lens design and develop practical lenses needed for the great variety of 21st-century applications. Continuing to focus on fundamental methods and procedures of lens design, this revision by R. Barry Johnson of a classic modernizes symbology and nomenclature, improves conceptual clarity, broadens the study of aberrations, enhances discussion of multi-mirror systems, adds tilted and decentered systems with eccentric pupils, explores use of aberrations in the optimization process, enlarges field flattener concepts, expands discussion of image analysis, includes many new exemplary examples to illustrate concepts, and much more. Optical engineers working in lens design will find this book an invaluable guide to lens design in traditional and emerging areas of application; it is also suited to advanced undergraduate or graduate course in lens design principles and as a self-learning tutorial and reference for the practitioner. Rudolf Kingslake (1903-2003) was a founding faculty member of the Institute of Optics at The University of Rochester (1929) and remained teaching until 1983. Concurrently, in 1937 he became head of the lens design department at Eastman Kodak until his retirement in 1969. Dr. Kingslake published numerous papers, books, and was awarded many patents. He was a Fellow of SPIE and OSA, and an OSA President (1947-48). He was awarded the Progress Medal from SMPTE (1978), the Frederic Ives Medal (1973), and the Gold Medal of SPIE (1980). R. Barry Johnson has been involved for over 40 years in lens design, optical systems design, and electro-optical systems engineering. He has been a faculty member at three academic institutions engaged in optics education and research, co-founder of the Center for Applied Optics at the University of Alabama in Huntsville, employed by a number of companies, and provided consulting services. Dr. Johnson is an SPIE Fellow and Life Member, OSA Fellow, and an SPIE President (1987). He published numerous papers and has been awarded many patents. Dr. Johnson was founder and Chairman of the SPIE Lens Design Working Group (1988-2002), is an active Program Committee member of the International Optical Design Conference, and perennial co-chair of the annual SPIE Current Developments in Lens Design and Optical Engineering Conference. - Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978 - Strong emphasis on how to effectively use software design packages, indispensable to today's lens designer - Many new lens design problems and examples – ranging from simple lenses to complex zoom lenses and mirror systems – give insight for both the newcomer and specialist in the field
Publisher: Academic Press
ISBN: 0080921566
Category : Technology & Engineering
Languages : en
Pages : 570
Book Description
- Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978 - Strong emphasis on how to effectively use software design packages, indispensable to today's lens designer - Many new lens design problems and examples – ranging from simple lenses to complex zoom lenses and mirror systems – give insight for both the newcomer and specialist in the field Rudolf Kingslake is regarded as the American father of lens design; his book, not revised since its publication in 1978, is viewed as a classic in the field. Naturally, the area has developed considerably since the book was published, the most obvious changes being the availability of powerful lens design software packages, theoretical advances, and new surface fabrication technologies. This book provides the skills and knowledge to move into the exciting world of contemporary lens design and develop practical lenses needed for the great variety of 21st-century applications. Continuing to focus on fundamental methods and procedures of lens design, this revision by R. Barry Johnson of a classic modernizes symbology and nomenclature, improves conceptual clarity, broadens the study of aberrations, enhances discussion of multi-mirror systems, adds tilted and decentered systems with eccentric pupils, explores use of aberrations in the optimization process, enlarges field flattener concepts, expands discussion of image analysis, includes many new exemplary examples to illustrate concepts, and much more. Optical engineers working in lens design will find this book an invaluable guide to lens design in traditional and emerging areas of application; it is also suited to advanced undergraduate or graduate course in lens design principles and as a self-learning tutorial and reference for the practitioner. Rudolf Kingslake (1903-2003) was a founding faculty member of the Institute of Optics at The University of Rochester (1929) and remained teaching until 1983. Concurrently, in 1937 he became head of the lens design department at Eastman Kodak until his retirement in 1969. Dr. Kingslake published numerous papers, books, and was awarded many patents. He was a Fellow of SPIE and OSA, and an OSA President (1947-48). He was awarded the Progress Medal from SMPTE (1978), the Frederic Ives Medal (1973), and the Gold Medal of SPIE (1980). R. Barry Johnson has been involved for over 40 years in lens design, optical systems design, and electro-optical systems engineering. He has been a faculty member at three academic institutions engaged in optics education and research, co-founder of the Center for Applied Optics at the University of Alabama in Huntsville, employed by a number of companies, and provided consulting services. Dr. Johnson is an SPIE Fellow and Life Member, OSA Fellow, and an SPIE President (1987). He published numerous papers and has been awarded many patents. Dr. Johnson was founder and Chairman of the SPIE Lens Design Working Group (1988-2002), is an active Program Committee member of the International Optical Design Conference, and perennial co-chair of the annual SPIE Current Developments in Lens Design and Optical Engineering Conference. - Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978 - Strong emphasis on how to effectively use software design packages, indispensable to today's lens designer - Many new lens design problems and examples – ranging from simple lenses to complex zoom lenses and mirror systems – give insight for both the newcomer and specialist in the field
Optical Imaging and Aberrations
Author: Virendra N. Mahajan
Publisher: SPIE-International Society for Optical Engineering
ISBN: 9780819486998
Category : Aberration
Languages : en
Pages : 0
Book Description
Ten years have passed since the publication of the first edition of this classic text in April 2001. Considerable new material amounting to 100 pages has been added in this second edition. Each chapter now contains a Summary section at the end. The new material in Chapter 4 consists of a detailed comparison of Gaussian apodization with a corresponding beam, determination of the optimum value of the Gaussian radius relative to that of the pupil to yield maximum focal-point irradiance, detailed discussion of standard deviation, aberration balancing, and Strehl ratio for primary aberrations, derivation of the aberration-free and defocused OTF, discussion of an aberrated beam yielding higher axial irradiance in a certain defocused region than its aberration-free focal-point value, illustration that aberrated PSFs lose the advantage of Gaussian apodizaton in reducing the secondary maxima of a PSF, and a brief description of the characterization of the width of a multimode beam. In Chapter 5, the effect of random longitudinal defocus on a PSF is included. The coherence length of atmospheric turbulence is calculated for looking both up and down through the atmosphere. Also discussed are the angle of arrival of a light wave propagating through turbulence, and lucky imaging where better-quality short-exposure images are selected, aligned, and added to obtain a high-quality image.
Publisher: SPIE-International Society for Optical Engineering
ISBN: 9780819486998
Category : Aberration
Languages : en
Pages : 0
Book Description
Ten years have passed since the publication of the first edition of this classic text in April 2001. Considerable new material amounting to 100 pages has been added in this second edition. Each chapter now contains a Summary section at the end. The new material in Chapter 4 consists of a detailed comparison of Gaussian apodization with a corresponding beam, determination of the optimum value of the Gaussian radius relative to that of the pupil to yield maximum focal-point irradiance, detailed discussion of standard deviation, aberration balancing, and Strehl ratio for primary aberrations, derivation of the aberration-free and defocused OTF, discussion of an aberrated beam yielding higher axial irradiance in a certain defocused region than its aberration-free focal-point value, illustration that aberrated PSFs lose the advantage of Gaussian apodizaton in reducing the secondary maxima of a PSF, and a brief description of the characterization of the width of a multimode beam. In Chapter 5, the effect of random longitudinal defocus on a PSF is included. The coherence length of atmospheric turbulence is calculated for looking both up and down through the atmosphere. Also discussed are the angle of arrival of a light wave propagating through turbulence, and lucky imaging where better-quality short-exposure images are selected, aligned, and added to obtain a high-quality image.