Author: Carlos A. Flores
Publisher: Springer
ISBN: 9811320179
Category : Business & Economics
Languages : en
Pages : 109
Book Description
This book reviews recent approaches for partial identification of average treatment effects with instrumental variables in the program evaluation literature, including Manski’s bounds, bounds based on threshold crossing models, and bounds based on the Local Average Treatment Effect (LATE) framework. It compares these bounds across different sets of assumptions, surveys relevant methods to assess the validity of these assumptions, and discusses estimation and inference methods for the bounds. The book also reviews some empirical applications employing bounds in the program evaluation literature. It aims to bridge the gap between the econometric theory on which the different bounds are based and their empirical application to program evaluation.
Average Treatment Effect Bounds with an Instrumental Variable: Theory and Practice
Author: Carlos A. Flores
Publisher: Springer
ISBN: 9811320179
Category : Business & Economics
Languages : en
Pages : 109
Book Description
This book reviews recent approaches for partial identification of average treatment effects with instrumental variables in the program evaluation literature, including Manski’s bounds, bounds based on threshold crossing models, and bounds based on the Local Average Treatment Effect (LATE) framework. It compares these bounds across different sets of assumptions, surveys relevant methods to assess the validity of these assumptions, and discusses estimation and inference methods for the bounds. The book also reviews some empirical applications employing bounds in the program evaluation literature. It aims to bridge the gap between the econometric theory on which the different bounds are based and their empirical application to program evaluation.
Publisher: Springer
ISBN: 9811320179
Category : Business & Economics
Languages : en
Pages : 109
Book Description
This book reviews recent approaches for partial identification of average treatment effects with instrumental variables in the program evaluation literature, including Manski’s bounds, bounds based on threshold crossing models, and bounds based on the Local Average Treatment Effect (LATE) framework. It compares these bounds across different sets of assumptions, surveys relevant methods to assess the validity of these assumptions, and discusses estimation and inference methods for the bounds. The book also reviews some empirical applications employing bounds in the program evaluation literature. It aims to bridge the gap between the econometric theory on which the different bounds are based and their empirical application to program evaluation.
Handbook of Causal Analysis for Social Research
Author: Stephen L. Morgan
Publisher: Springer Science & Business Media
ISBN: 9400760949
Category : Social Science
Languages : en
Pages : 423
Book Description
What constitutes a causal explanation, and must an explanation be causal? What warrants a causal inference, as opposed to a descriptive regularity? What techniques are available to detect when causal effects are present, and when can these techniques be used to identify the relative importance of these effects? What complications do the interactions of individuals create for these techniques? When can mixed methods of analysis be used to deepen causal accounts? Must causal claims include generative mechanisms, and how effective are empirical methods designed to discover them? The Handbook of Causal Analysis for Social Research tackles these questions with nineteen chapters from leading scholars in sociology, statistics, public health, computer science, and human development.
Publisher: Springer Science & Business Media
ISBN: 9400760949
Category : Social Science
Languages : en
Pages : 423
Book Description
What constitutes a causal explanation, and must an explanation be causal? What warrants a causal inference, as opposed to a descriptive regularity? What techniques are available to detect when causal effects are present, and when can these techniques be used to identify the relative importance of these effects? What complications do the interactions of individuals create for these techniques? When can mixed methods of analysis be used to deepen causal accounts? Must causal claims include generative mechanisms, and how effective are empirical methods designed to discover them? The Handbook of Causal Analysis for Social Research tackles these questions with nineteen chapters from leading scholars in sociology, statistics, public health, computer science, and human development.
Methods in Comparative Effectiveness Research
Author: Constantine Gatsonis
Publisher: CRC Press
ISBN: 1466511974
Category : Mathematics
Languages : en
Pages : 575
Book Description
Comparative effectiveness research (CER) is the generation and synthesis of evidence that compares the benefits and harms of alternative methods to prevent, diagnose, treat, and monitor a clinical condition or to improve the delivery of care (IOM 2009). CER is conducted to develop evidence that will aid patients, clinicians, purchasers, and health policy makers in making informed decisions at both the individual and population levels. CER encompasses a very broad range of types of studies—experimental, observational, prospective, retrospective, and research synthesis. This volume covers the main areas of quantitative methodology for the design and analysis of CER studies. The volume has four major sections—causal inference; clinical trials; research synthesis; and specialized topics. The audience includes CER methodologists, quantitative-trained researchers interested in CER, and graduate students in statistics, epidemiology, and health services and outcomes research. The book assumes a masters-level course in regression analysis and familiarity with clinical research.
Publisher: CRC Press
ISBN: 1466511974
Category : Mathematics
Languages : en
Pages : 575
Book Description
Comparative effectiveness research (CER) is the generation and synthesis of evidence that compares the benefits and harms of alternative methods to prevent, diagnose, treat, and monitor a clinical condition or to improve the delivery of care (IOM 2009). CER is conducted to develop evidence that will aid patients, clinicians, purchasers, and health policy makers in making informed decisions at both the individual and population levels. CER encompasses a very broad range of types of studies—experimental, observational, prospective, retrospective, and research synthesis. This volume covers the main areas of quantitative methodology for the design and analysis of CER studies. The volume has four major sections—causal inference; clinical trials; research synthesis; and specialized topics. The audience includes CER methodologists, quantitative-trained researchers interested in CER, and graduate students in statistics, epidemiology, and health services and outcomes research. The book assumes a masters-level course in regression analysis and familiarity with clinical research.
Handbook of Quantile Regression
Author: Roger Koenker
Publisher: CRC Press
ISBN: 1351646567
Category : Mathematics
Languages : en
Pages : 739
Book Description
Quantile regression constitutes an ensemble of statistical techniques intended to estimate and draw inferences about conditional quantile functions. Median regression, as introduced in the 18th century by Boscovich and Laplace, is a special case. In contrast to conventional mean regression that minimizes sums of squared residuals, median regression minimizes sums of absolute residuals; quantile regression simply replaces symmetric absolute loss by asymmetric linear loss. Since its introduction in the 1970's by Koenker and Bassett, quantile regression has been gradually extended to a wide variety of data analytic settings including time series, survival analysis, and longitudinal data. By focusing attention on local slices of the conditional distribution of response variables it is capable of providing a more complete, more nuanced view of heterogeneous covariate effects. Applications of quantile regression can now be found throughout the sciences, including astrophysics, chemistry, ecology, economics, finance, genomics, medicine, and meteorology. Software for quantile regression is now widely available in all the major statistical computing environments. The objective of this volume is to provide a comprehensive review of recent developments of quantile regression methodology illustrating its applicability in a wide range of scientific settings. The intended audience of the volume is researchers and graduate students across a diverse set of disciplines.
Publisher: CRC Press
ISBN: 1351646567
Category : Mathematics
Languages : en
Pages : 739
Book Description
Quantile regression constitutes an ensemble of statistical techniques intended to estimate and draw inferences about conditional quantile functions. Median regression, as introduced in the 18th century by Boscovich and Laplace, is a special case. In contrast to conventional mean regression that minimizes sums of squared residuals, median regression minimizes sums of absolute residuals; quantile regression simply replaces symmetric absolute loss by asymmetric linear loss. Since its introduction in the 1970's by Koenker and Bassett, quantile regression has been gradually extended to a wide variety of data analytic settings including time series, survival analysis, and longitudinal data. By focusing attention on local slices of the conditional distribution of response variables it is capable of providing a more complete, more nuanced view of heterogeneous covariate effects. Applications of quantile regression can now be found throughout the sciences, including astrophysics, chemistry, ecology, economics, finance, genomics, medicine, and meteorology. Software for quantile regression is now widely available in all the major statistical computing environments. The objective of this volume is to provide a comprehensive review of recent developments of quantile regression methodology illustrating its applicability in a wide range of scientific settings. The intended audience of the volume is researchers and graduate students across a diverse set of disciplines.
Social Choice with Partial Knowledge of Treatment Response
Author: Charles F. Manski
Publisher: Princeton University Press
ISBN: 9780691121536
Category : Business & Economics
Languages : en
Pages : 138
Book Description
"This book addresses key aspects of this broad question, exploring and partially resolving pervasive problems of identification and statistical inference that arise when studying treatment response and making treatment choices. Charles Manski addresses the treatment-choice problem directly using Abraham Wald's statistical decision theory, taking into account the ambiguity that arises from identification problems under weak but justifiable assumptions."--BOOK JACKET.
Publisher: Princeton University Press
ISBN: 9780691121536
Category : Business & Economics
Languages : en
Pages : 138
Book Description
"This book addresses key aspects of this broad question, exploring and partially resolving pervasive problems of identification and statistical inference that arise when studying treatment response and making treatment choices. Charles Manski addresses the treatment-choice problem directly using Abraham Wald's statistical decision theory, taking into account the ambiguity that arises from identification problems under weak but justifiable assumptions."--BOOK JACKET.
The Estimation of Causal Effects by Difference-in-difference Methods
Author: Michael Lechner
Publisher: Foundations and Trends(r) in E
ISBN: 9781601984982
Category : Business & Economics
Languages : en
Pages : 72
Book Description
This monograph presents a brief overview of the literature on the difference-in-difference estimation strategy and discusses major issues mainly using a treatment effect perspective that allows more general considerations than the classical regression formulation that still dominates the applied work.
Publisher: Foundations and Trends(r) in E
ISBN: 9781601984982
Category : Business & Economics
Languages : en
Pages : 72
Book Description
This monograph presents a brief overview of the literature on the difference-in-difference estimation strategy and discusses major issues mainly using a treatment effect perspective that allows more general considerations than the classical regression formulation that still dominates the applied work.
Identification Problems in the Social Sciences
Author: Charles F. Manski
Publisher: Harvard University Press
ISBN: 9780674442849
Category : Business & Economics
Languages : en
Pages : 194
Book Description
The author draws on examples from a range of disciplines to provide social and behavioural scientists with a toolkit for finding bounds when predicting behaviours based upon nonexperimental and experimental data.
Publisher: Harvard University Press
ISBN: 9780674442849
Category : Business & Economics
Languages : en
Pages : 194
Book Description
The author draws on examples from a range of disciplines to provide social and behavioural scientists with a toolkit for finding bounds when predicting behaviours based upon nonexperimental and experimental data.
The Economics of Artificial Intelligence
Author: Ajay Agrawal
Publisher: University of Chicago Press
ISBN: 0226833127
Category : Business & Economics
Languages : en
Pages : 172
Book Description
A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.
Publisher: University of Chicago Press
ISBN: 0226833127
Category : Business & Economics
Languages : en
Pages : 172
Book Description
A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.
Partial Identification of Probability Distributions
Author: Charles F. Manski
Publisher: Springer Science & Business Media
ISBN: 038721786X
Category : Mathematics
Languages : en
Pages : 188
Book Description
The book presents in a rigorous and thorough manner the main elements of Charles Manski's research on partial identification of probability distributions. The approach to inference that runs throughout the book is deliberately conservative and thoroughly nonparametric. There is an enormous scope for fruitful inference using data and assumptions that partially identify population parameters.
Publisher: Springer Science & Business Media
ISBN: 038721786X
Category : Mathematics
Languages : en
Pages : 188
Book Description
The book presents in a rigorous and thorough manner the main elements of Charles Manski's research on partial identification of probability distributions. The approach to inference that runs throughout the book is deliberately conservative and thoroughly nonparametric. There is an enormous scope for fruitful inference using data and assumptions that partially identify population parameters.
Monotone Instrumental Variables with an Application to the Returns to Schooling
Author: Charles F. Manski
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 62
Book Description
Econometric analyses of treatment response commonly use instrumental variable (IV) assumptions to identify treatment effects. Yet the credibility of IV assumptions is often a matter of considerable disagreement, with much debate about whether some covariate is or is not a "valid instrument" in an application of interest. There is therefore good reason to consider weaker but more credible assumptions. assumptions. To this end, we introduce monotone instrumental variable (MIV) A particularly interesting special case of an MIV assumption is monotone treatment selection (MTS). IV and MIV assumptions may be imposed alone or in combination with other assumptions. We study the identifying power of MIV assumptions in three informational settings: MIV alone; MIV combined with the classical linear response assumption; MIV combined with the monotone treatment response (MTR) assumption. We apply the results to the problem of inference on the returns to schooling. We analyze wage data reported by white male respondents to the National Longitudinal Survey of Youth (NLSY) and use the respondent's AFQT score as an MIV. We find that this MIV assumption has little identifying power when imposed alone. However combining the MIV assumption with the MTR and MTS assumptions yields fairly tight bounds on two distinct measures of the returns to schooling.
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 62
Book Description
Econometric analyses of treatment response commonly use instrumental variable (IV) assumptions to identify treatment effects. Yet the credibility of IV assumptions is often a matter of considerable disagreement, with much debate about whether some covariate is or is not a "valid instrument" in an application of interest. There is therefore good reason to consider weaker but more credible assumptions. assumptions. To this end, we introduce monotone instrumental variable (MIV) A particularly interesting special case of an MIV assumption is monotone treatment selection (MTS). IV and MIV assumptions may be imposed alone or in combination with other assumptions. We study the identifying power of MIV assumptions in three informational settings: MIV alone; MIV combined with the classical linear response assumption; MIV combined with the monotone treatment response (MTR) assumption. We apply the results to the problem of inference on the returns to schooling. We analyze wage data reported by white male respondents to the National Longitudinal Survey of Youth (NLSY) and use the respondent's AFQT score as an MIV. We find that this MIV assumption has little identifying power when imposed alone. However combining the MIV assumption with the MTR and MTS assumptions yields fairly tight bounds on two distinct measures of the returns to schooling.