Automorphic Forms

Automorphic Forms PDF Author: Anton Deitmar
Publisher: Springer Science & Business Media
ISBN: 144714435X
Category : Mathematics
Languages : en
Pages : 255

Get Book Here

Book Description
Automorphic forms are an important complex analytic tool in number theory and modern arithmetic geometry. They played for example a vital role in Andrew Wiles's proof of Fermat's Last Theorem. This text provides a concise introduction to the world of automorphic forms using two approaches: the classic elementary theory and the modern point of view of adeles and representation theory. The reader will learn the important aims and results of the theory by focussing on its essential aspects and restricting it to the 'base field' of rational numbers. Students interested for example in arithmetic geometry or number theory will find that this book provides an optimal and easily accessible introduction into this topic.

Automorphic Forms

Automorphic Forms PDF Author: Anton Deitmar
Publisher: Springer Science & Business Media
ISBN: 144714435X
Category : Mathematics
Languages : en
Pages : 255

Get Book Here

Book Description
Automorphic forms are an important complex analytic tool in number theory and modern arithmetic geometry. They played for example a vital role in Andrew Wiles's proof of Fermat's Last Theorem. This text provides a concise introduction to the world of automorphic forms using two approaches: the classic elementary theory and the modern point of view of adeles and representation theory. The reader will learn the important aims and results of the theory by focussing on its essential aspects and restricting it to the 'base field' of rational numbers. Students interested for example in arithmetic geometry or number theory will find that this book provides an optimal and easily accessible introduction into this topic.

Automorphic Forms on GL (3,TR)

Automorphic Forms on GL (3,TR) PDF Author: D. Bump
Publisher: Springer
ISBN: 3540390553
Category : Mathematics
Languages : en
Pages : 196

Get Book Here

Book Description


Topics in Classical Automorphic Forms

Topics in Classical Automorphic Forms PDF Author: Henryk Iwaniec
Publisher: American Mathematical Soc.
ISBN: 0821807773
Category : Mathematics
Languages : en
Pages : 274

Get Book Here

Book Description
This volume discusses various perspectives of the theory of automorphic forms drawn from the author's notes from a Rutgers University graduate course. In addition to detailed and often nonstandard treatment of familiar theoretical topics, the author also gives special attention to such subjects as theta- functions and representatives by quadratic forms. Annotation copyrighted by Book News, Inc., Portland, OR

Automorphic Forms, Representations and $L$-Functions

Automorphic Forms, Representations and $L$-Functions PDF Author: Armand Borel
Publisher: American Mathematical Soc.
ISBN: 0821814370
Category : Mathematics
Languages : en
Pages : 394

Get Book Here

Book Description
Part 2 contains sections on Automorphic representations and $L$-functions, Arithmetical algebraic geometry and $L$-functions

Spectral Methods of Automorphic Forms

Spectral Methods of Automorphic Forms PDF Author: Henryk Iwaniec
Publisher: American Mathematical Society, Revista Matemática Iberoamericana (RMI), Madrid, Spain
ISBN: 1470466228
Category : Mathematics
Languages : en
Pages : 220

Get Book Here

Book Description
Automorphic forms are one of the central topics of analytic number theory. In fact, they sit at the confluence of analysis, algebra, geometry, and number theory. In this book, Henryk Iwaniec once again displays his penetrating insight, powerful analytic techniques, and lucid writing style. The first edition of this book was an underground classic, both as a textbook and as a respected source for results, ideas, and references. Iwaniec treats the spectral theory of automorphic forms as the study of the space of $L^2$ functions on the upper half plane modulo a discrete subgroup. Key topics include Eisenstein series, estimates of Fourier coefficients, Kloosterman sums, the Selberg trace formula and the theory of small eigenvalues. Henryk Iwaniec was awarded the 2002 Cole Prize for his fundamental contributions to number theory.

Automorphic Forms on GL (2)

Automorphic Forms on GL (2) PDF Author: H. Jacquet
Publisher: Springer
ISBN: 3540376127
Category : Mathematics
Languages : en
Pages : 156

Get Book Here

Book Description


Representation Theory and Automorphic Forms

Representation Theory and Automorphic Forms PDF Author: Toshiyuki Kobayashi
Publisher: Springer Science & Business Media
ISBN: 0817646469
Category : Mathematics
Languages : en
Pages : 220

Get Book Here

Book Description
This volume uses a unified approach to representation theory and automorphic forms. It collects papers, written by leading mathematicians, that track recent progress in the expanding fields of representation theory and automorphic forms and their association with number theory and differential geometry. Topics include: Automorphic forms and distributions, modular forms, visible-actions, Dirac cohomology, holomorphic forms, harmonic analysis, self-dual representations, and Langlands Functoriality Conjecture, Both graduate students and researchers will find inspiration in this volume.

Introduction to the Arithmetic Theory of Automorphic Functions

Introduction to the Arithmetic Theory of Automorphic Functions PDF Author: Gorō Shimura
Publisher: Princeton University Press
ISBN: 9780691080925
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.

Automorphic Forms and Even Unimodular Lattices

Automorphic Forms and Even Unimodular Lattices PDF Author: Gaëtan Chenevier
Publisher: Springer
ISBN: 3319958917
Category : Mathematics
Languages : en
Pages : 428

Get Book Here

Book Description
This book includes a self-contained approach of the general theory of quadratic forms and integral Euclidean lattices, as well as a presentation of the theory of automorphic forms and Langlands' conjectures, ranging from the first definitions to the recent and deep classification results due to James Arthur. Its connecting thread is a question about lattices of rank 24: the problem of p-neighborhoods between Niemeier lattices. This question, whose expression is quite elementary, is in fact very natural from the automorphic point of view, and turns out to be surprisingly intriguing. We explain how the new advances in the Langlands program mentioned above pave the way for a solution. This study proves to be very rich, leading us to classical themes such as theta series, Siegel modular forms, the triality principle, L-functions and congruences between Galois representations. This monograph is intended for any mathematician with an interest in Euclidean lattices, automorphic forms or number theory. A large part of it is meant to be accessible to non-specialists.

Automorphic Forms and L-Functions for the Group GL(n,R)

Automorphic Forms and L-Functions for the Group GL(n,R) PDF Author: Dorian Goldfeld
Publisher: Cambridge University Press
ISBN: 1139456202
Category : Mathematics
Languages : en
Pages : 65

Get Book Here

Book Description
L-functions associated to automorphic forms encode all classical number theoretic information. They are akin to elementary particles in physics. This book provides an entirely self-contained introduction to the theory of L-functions in a style accessible to graduate students with a basic knowledge of classical analysis, complex variable theory, and algebra. Also within the volume are many new results not yet found in the literature. The exposition provides complete detailed proofs of results in an easy-to-read format using many examples and without the need to know and remember many complex definitions. The main themes of the book are first worked out for GL(2,R) and GL(3,R), and then for the general case of GL(n,R). In an appendix to the book, a set of Mathematica functions is presented, designed to allow the reader to explore the theory from a computational point of view.