Author: R.M. Latanison
Publisher: Springer Science & Business Media
ISBN: 1461335000
Category : Science
Languages : en
Pages : 1043
Book Description
It is now more than 100 years since certain detrimental effects on the ductility of iron were first associated with the presence of hydrogen. Not only is hydrogen embrittlement still a major industri al problem, but it is safe to say that in a mechanistic sense we still do not know what hydrogen (but not nitrogen or oxygen, for example) does on an atomic scale to induce this degradation. The same applies to other examples of environmentally-induced fracture: what is it about the ubiquitous chloride ion that induces premature catastrophic fracture (stress corrosion cracking) of ordinarily ductile austenitic stainless steels? Why, moreover, are halide ions troublesome but the nitrate or sulfate anions not deleterious to such stainless steels? Likewise, why are some solid metals embrit tled catastrophically by same liquid metals (liquid metal embrit tlement) - copper and aluminum, for example, are embrittled by liquid mercury. In short, despite all that we may know about the materials science and mechanics of fracture on a macroscopic scale, we know little about the atomistics of fracture in the absence of environmental interactions and even less when embrittlement phe nomena such as those described above are involved. On the other hand, it is interesting to note that physical chemists and surface chemists also have interests in the same kinds of interactions that occur on an atomic scale when metals such as nickel or platinum are used, for example, as catalysts for chemical reactions.
Atomistics of Fracture
Author: R.M. Latanison
Publisher: Springer Science & Business Media
ISBN: 1461335000
Category : Science
Languages : en
Pages : 1043
Book Description
It is now more than 100 years since certain detrimental effects on the ductility of iron were first associated with the presence of hydrogen. Not only is hydrogen embrittlement still a major industri al problem, but it is safe to say that in a mechanistic sense we still do not know what hydrogen (but not nitrogen or oxygen, for example) does on an atomic scale to induce this degradation. The same applies to other examples of environmentally-induced fracture: what is it about the ubiquitous chloride ion that induces premature catastrophic fracture (stress corrosion cracking) of ordinarily ductile austenitic stainless steels? Why, moreover, are halide ions troublesome but the nitrate or sulfate anions not deleterious to such stainless steels? Likewise, why are some solid metals embrit tled catastrophically by same liquid metals (liquid metal embrit tlement) - copper and aluminum, for example, are embrittled by liquid mercury. In short, despite all that we may know about the materials science and mechanics of fracture on a macroscopic scale, we know little about the atomistics of fracture in the absence of environmental interactions and even less when embrittlement phe nomena such as those described above are involved. On the other hand, it is interesting to note that physical chemists and surface chemists also have interests in the same kinds of interactions that occur on an atomic scale when metals such as nickel or platinum are used, for example, as catalysts for chemical reactions.
Publisher: Springer Science & Business Media
ISBN: 1461335000
Category : Science
Languages : en
Pages : 1043
Book Description
It is now more than 100 years since certain detrimental effects on the ductility of iron were first associated with the presence of hydrogen. Not only is hydrogen embrittlement still a major industri al problem, but it is safe to say that in a mechanistic sense we still do not know what hydrogen (but not nitrogen or oxygen, for example) does on an atomic scale to induce this degradation. The same applies to other examples of environmentally-induced fracture: what is it about the ubiquitous chloride ion that induces premature catastrophic fracture (stress corrosion cracking) of ordinarily ductile austenitic stainless steels? Why, moreover, are halide ions troublesome but the nitrate or sulfate anions not deleterious to such stainless steels? Likewise, why are some solid metals embrit tled catastrophically by same liquid metals (liquid metal embrit tlement) - copper and aluminum, for example, are embrittled by liquid mercury. In short, despite all that we may know about the materials science and mechanics of fracture on a macroscopic scale, we know little about the atomistics of fracture in the absence of environmental interactions and even less when embrittlement phe nomena such as those described above are involved. On the other hand, it is interesting to note that physical chemists and surface chemists also have interests in the same kinds of interactions that occur on an atomic scale when metals such as nickel or platinum are used, for example, as catalysts for chemical reactions.
Atomistic Modeling of Materials Failure
Author: Markus J. Buehler
Publisher: Springer Science & Business Media
ISBN: 0387764267
Category : Science
Languages : en
Pages : 547
Book Description
This is an introduction to molecular and atomistic modeling techniques applied to fracture and deformation of solids, focusing on a variety of brittle, ductile, geometrically confined and biological materials. The overview includes computational methods and techniques operating at the atomic scale, and describes how these techniques can be used to model cracks and other deformation mechanisms. The book aims to make new molecular modeling techniques available to a wider community.
Publisher: Springer Science & Business Media
ISBN: 0387764267
Category : Science
Languages : en
Pages : 547
Book Description
This is an introduction to molecular and atomistic modeling techniques applied to fracture and deformation of solids, focusing on a variety of brittle, ductile, geometrically confined and biological materials. The overview includes computational methods and techniques operating at the atomic scale, and describes how these techniques can be used to model cracks and other deformation mechanisms. The book aims to make new molecular modeling techniques available to a wider community.
Fracture of Brittle Solids
Author: Brian R. Lawn
Publisher: Cambridge University Press
ISBN: 9780521409728
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
This book is a monograph on the brittle fracture of ceramic materials, in a unified continuum, microstructural and atomistic treatment.
Publisher: Cambridge University Press
ISBN: 9780521409728
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
This book is a monograph on the brittle fracture of ceramic materials, in a unified continuum, microstructural and atomistic treatment.
Mechanical Properties of Metals
Author: C. W. Lung
Publisher: World Scientific
ISBN: 9789810226220
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
The book is intended to describe the basic and newly developed elements of the physics of solids and materials science on mechanical properties of metals with as much continuity as is possible. Particular emphasis has been placed in atomistic and fractal approaches and continuum theory of dislocations is also introduced. Since the book is meant for the two main topics of progress in recent years, some interesting and important topics which have not been discussed or introduced are given in detail.For a long time, pair potentials were used very expensively in simulation studies. They can reproduce usefully total energies for many systems. But when one turns to elastic properties, fracture of surfaces, and the vacancy formation energy, deficiencies and limitations begin to emerge. These limitations of the simple pair potential approximation have been addressed by the development of empirical many-body potentials which is the major theme of our book.Over a decade or more, diverse scientists have recognized that many of the structures common in their experiments have a special kind of geometrical complexity. The key to this progress is the recognition that many random structures obey a symmetry that objects look the same on many different scales of observation. The concept of fractals was introduced by Mandelbrot and applied to fractures by himself and collaborators. Their work pointed to a correlation between toughness and the fractal dimension. Our interest is the fractal aspects of fractured surfaces. We will discuss more in our book.The strain field of a dislocation has a long range part and this part can be discussed rigorously from elasticity theory. Recent progress in elastic strain fields and dislocation mobility were made by Indenbom and Lothe. The elementary essentials will be introduced in our book.
Publisher: World Scientific
ISBN: 9789810226220
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
The book is intended to describe the basic and newly developed elements of the physics of solids and materials science on mechanical properties of metals with as much continuity as is possible. Particular emphasis has been placed in atomistic and fractal approaches and continuum theory of dislocations is also introduced. Since the book is meant for the two main topics of progress in recent years, some interesting and important topics which have not been discussed or introduced are given in detail.For a long time, pair potentials were used very expensively in simulation studies. They can reproduce usefully total energies for many systems. But when one turns to elastic properties, fracture of surfaces, and the vacancy formation energy, deficiencies and limitations begin to emerge. These limitations of the simple pair potential approximation have been addressed by the development of empirical many-body potentials which is the major theme of our book.Over a decade or more, diverse scientists have recognized that many of the structures common in their experiments have a special kind of geometrical complexity. The key to this progress is the recognition that many random structures obey a symmetry that objects look the same on many different scales of observation. The concept of fractals was introduced by Mandelbrot and applied to fractures by himself and collaborators. Their work pointed to a correlation between toughness and the fractal dimension. Our interest is the fractal aspects of fractured surfaces. We will discuss more in our book.The strain field of a dislocation has a long range part and this part can be discussed rigorously from elasticity theory. Recent progress in elastic strain fields and dislocation mobility were made by Indenbom and Lothe. The elementary essentials will be introduced in our book.
Fracture Nanomechanics
Author: Takayuki Kitamura
Publisher: CRC Press
ISBN: 9814241830
Category : Science
Languages : en
Pages : 306
Book Description
Small structures of the micro/nanometer scale, such as electronic/optic devices and MEMS/NEMS have been developed, and the size of their elements now approaches the nano/atomic scale. This book discuses the fracture behavior of nano/atomic elements (nanofilms, nanowires, and so on) and focuses on the initiation and propagation of interface crack and mechanical instability criterion of atomic structures. This covers the fundamentals and the applicability of the top-down (conventional fracture mechanics to nanoscale) and bottom-up (atomic mechanics including ab initio simulation) concepts. New areas, such as multiphysics characteristics of nanoelements, are introduced as well.
Publisher: CRC Press
ISBN: 9814241830
Category : Science
Languages : en
Pages : 306
Book Description
Small structures of the micro/nanometer scale, such as electronic/optic devices and MEMS/NEMS have been developed, and the size of their elements now approaches the nano/atomic scale. This book discuses the fracture behavior of nano/atomic elements (nanofilms, nanowires, and so on) and focuses on the initiation and propagation of interface crack and mechanical instability criterion of atomic structures. This covers the fundamentals and the applicability of the top-down (conventional fracture mechanics to nanoscale) and bottom-up (atomic mechanics including ab initio simulation) concepts. New areas, such as multiphysics characteristics of nanoelements, are introduced as well.
Fracture Mechanics
Author: Chin-Teh Sun
Publisher: Academic Press
ISBN: 0123850010
Category : Technology & Engineering
Languages : en
Pages : 337
Book Description
From a leading expert in fracture mechanics, this text provides new approaches and new applications to advance the understanding of crack formation and propagation.
Publisher: Academic Press
ISBN: 0123850010
Category : Technology & Engineering
Languages : en
Pages : 337
Book Description
From a leading expert in fracture mechanics, this text provides new approaches and new applications to advance the understanding of crack formation and propagation.
The Physics of Deformation and Fracture of Polymers
Author: A. S. Argon
Publisher: Cambridge University Press
ISBN: 0521821843
Category : Science
Languages : en
Pages : 535
Book Description
A physical, mechanism-based presentation of the plasticity and fracture of polymers, covering industrial scale applications through to nanoscale biofluidic devices.
Publisher: Cambridge University Press
ISBN: 0521821843
Category : Science
Languages : en
Pages : 535
Book Description
A physical, mechanism-based presentation of the plasticity and fracture of polymers, covering industrial scale applications through to nanoscale biofluidic devices.
Configurational Forces
Author: Gerard A. Maugin
Publisher: CRC Press
ISBN: 9781439846131
Category : Mathematics
Languages : en
Pages : 562
Book Description
Exploring recent developments in continuum mechanics, Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics presents the general framework for configurational forces. It also covers a range of applications in engineering and condensed matter physics. The author presents the fundamentals of accepted standard continuum mechanics, before introducing Eshelby material stress, field theory, variational formulations, Noether’s theorem, and the resulting conservation laws. In the chapter on complex continua, he compares the classical perspective of B.D. Coleman and W. Noll with the viewpoint linked to abstract field theory. He then describes the important notion of local structural rearrangement and its relationship to Eshelby stress. After looking at the relevance of Eshelby stress in the thermodynamic description of singular interfaces, the text focuses on fracture problems, microstructured media, systems with mass exchanges, and electromagnetic deformable media. The concluding chapters discuss the exploitation of the canonical conservation law of momentum in nonlinear wave propagation, the application of canonical-momentum conservation law and material force in numerical schemes, and similarities of fluid mechanics and aerodynamics. Written by a long-time researcher in mechanical engineering, this book provides a detailed treatment of the theory of configurational forces—one of the latest and most fruitful advances in macroscopic field theories. Through many applications, it shows the depth and efficiency of this theory.
Publisher: CRC Press
ISBN: 9781439846131
Category : Mathematics
Languages : en
Pages : 562
Book Description
Exploring recent developments in continuum mechanics, Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics presents the general framework for configurational forces. It also covers a range of applications in engineering and condensed matter physics. The author presents the fundamentals of accepted standard continuum mechanics, before introducing Eshelby material stress, field theory, variational formulations, Noether’s theorem, and the resulting conservation laws. In the chapter on complex continua, he compares the classical perspective of B.D. Coleman and W. Noll with the viewpoint linked to abstract field theory. He then describes the important notion of local structural rearrangement and its relationship to Eshelby stress. After looking at the relevance of Eshelby stress in the thermodynamic description of singular interfaces, the text focuses on fracture problems, microstructured media, systems with mass exchanges, and electromagnetic deformable media. The concluding chapters discuss the exploitation of the canonical conservation law of momentum in nonlinear wave propagation, the application of canonical-momentum conservation law and material force in numerical schemes, and similarities of fluid mechanics and aerodynamics. Written by a long-time researcher in mechanical engineering, this book provides a detailed treatment of the theory of configurational forces—one of the latest and most fruitful advances in macroscopic field theories. Through many applications, it shows the depth and efficiency of this theory.
Numerical Mathematics
Author: Alfio Quarteroni
Publisher: Springer
ISBN: 0387227504
Category : Mathematics
Languages : en
Pages : 669
Book Description
The purpose of this book is to provide the mathematical foundations of numerical methods, to analyze their basic theoretical properties and to demonstrate their performances on examples and counterexamples. Within any specific class of problems, the most appropriate scientific computing algorithms are reviewed, their theoretical analyses are carried out and the expected results are verified using the MATLAB software environment. Each chapter contains examples, exercises and applications of the theory discussed to the solution of real-life problems. While addressed to senior undergraduates and graduates in engineering, mathematics, physics and computer sciences, this text is also valuable for researchers and users of scientific computing in a large variety of professional fields.
Publisher: Springer
ISBN: 0387227504
Category : Mathematics
Languages : en
Pages : 669
Book Description
The purpose of this book is to provide the mathematical foundations of numerical methods, to analyze their basic theoretical properties and to demonstrate their performances on examples and counterexamples. Within any specific class of problems, the most appropriate scientific computing algorithms are reviewed, their theoretical analyses are carried out and the expected results are verified using the MATLAB software environment. Each chapter contains examples, exercises and applications of the theory discussed to the solution of real-life problems. While addressed to senior undergraduates and graduates in engineering, mathematics, physics and computer sciences, this text is also valuable for researchers and users of scientific computing in a large variety of professional fields.
Dynamic Fracture Mechanics
Author: Arun Shukla
Publisher: World Scientific
ISBN: 9812773320
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
Covering a wide variety of topics in dynamic fracture mechanics, this volume presents state-of-the-art experimental techniques and theoretical analysis on dynamic fracture in standard and exotic materials. Written by world renowned researchers, this valuable compendium contains eleven chapters on crack initiation, crack propagation, crack arrest, crack-stress wave interactions, and experimental, analytical and numerical methods in dynamic fracture mechanics. Contents: Modeling Dynamic Fracture Using Large-Scale Atomistic Simulations (H-J Gao & M J Buehler); Dynamic Crack Initiation Toughness (D Rittel); The Dynamics of Rapidly Moving Tensile Cracks in Brittle Amorphous Material (J Fineberg); Optical Methods for Dynamic Fracture Mechanics (H V Tippur); On the Use of Strain Gages in Dynamic Fracture (V Parameswaran & A Shukla); Dynamic and Crack Arrest Fracture Toughness (R E Link & R Chona); Dynamic Fracture in Graded Materials (A Shukla & N Jain); Dynamic Fracture Initiation Toughness at Elevated Temperatures with Application to the New Generation of Titanium Aluminides Alloys (M Shazly et al.); Dynamic Fracture of Nanocomposite Materials (A Shukla et al.). Readership: Researchers, practitioners, and graduate students in fracture mechanics and materials science.
Publisher: World Scientific
ISBN: 9812773320
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
Covering a wide variety of topics in dynamic fracture mechanics, this volume presents state-of-the-art experimental techniques and theoretical analysis on dynamic fracture in standard and exotic materials. Written by world renowned researchers, this valuable compendium contains eleven chapters on crack initiation, crack propagation, crack arrest, crack-stress wave interactions, and experimental, analytical and numerical methods in dynamic fracture mechanics. Contents: Modeling Dynamic Fracture Using Large-Scale Atomistic Simulations (H-J Gao & M J Buehler); Dynamic Crack Initiation Toughness (D Rittel); The Dynamics of Rapidly Moving Tensile Cracks in Brittle Amorphous Material (J Fineberg); Optical Methods for Dynamic Fracture Mechanics (H V Tippur); On the Use of Strain Gages in Dynamic Fracture (V Parameswaran & A Shukla); Dynamic and Crack Arrest Fracture Toughness (R E Link & R Chona); Dynamic Fracture in Graded Materials (A Shukla & N Jain); Dynamic Fracture Initiation Toughness at Elevated Temperatures with Application to the New Generation of Titanium Aluminides Alloys (M Shazly et al.); Dynamic Fracture of Nanocomposite Materials (A Shukla et al.). Readership: Researchers, practitioners, and graduate students in fracture mechanics and materials science.