Atomistics of Fracture

Atomistics of Fracture PDF Author: R.M. Latanison
Publisher: Springer Science & Business Media
ISBN: 1461335000
Category : Science
Languages : en
Pages : 1043

Get Book Here

Book Description
It is now more than 100 years since certain detrimental effects on the ductility of iron were first associated with the presence of hydrogen. Not only is hydrogen embrittlement still a major industri al problem, but it is safe to say that in a mechanistic sense we still do not know what hydrogen (but not nitrogen or oxygen, for example) does on an atomic scale to induce this degradation. The same applies to other examples of environmentally-induced fracture: what is it about the ubiquitous chloride ion that induces premature catastrophic fracture (stress corrosion cracking) of ordinarily ductile austenitic stainless steels? Why, moreover, are halide ions troublesome but the nitrate or sulfate anions not deleterious to such stainless steels? Likewise, why are some solid metals embrit tled catastrophically by same liquid metals (liquid metal embrit tlement) - copper and aluminum, for example, are embrittled by liquid mercury. In short, despite all that we may know about the materials science and mechanics of fracture on a macroscopic scale, we know little about the atomistics of fracture in the absence of environmental interactions and even less when embrittlement phe nomena such as those described above are involved. On the other hand, it is interesting to note that physical chemists and surface chemists also have interests in the same kinds of interactions that occur on an atomic scale when metals such as nickel or platinum are used, for example, as catalysts for chemical reactions.

Atomistics of Fracture

Atomistics of Fracture PDF Author: R.M. Latanison
Publisher: Springer Science & Business Media
ISBN: 1461335000
Category : Science
Languages : en
Pages : 1043

Get Book Here

Book Description
It is now more than 100 years since certain detrimental effects on the ductility of iron were first associated with the presence of hydrogen. Not only is hydrogen embrittlement still a major industri al problem, but it is safe to say that in a mechanistic sense we still do not know what hydrogen (but not nitrogen or oxygen, for example) does on an atomic scale to induce this degradation. The same applies to other examples of environmentally-induced fracture: what is it about the ubiquitous chloride ion that induces premature catastrophic fracture (stress corrosion cracking) of ordinarily ductile austenitic stainless steels? Why, moreover, are halide ions troublesome but the nitrate or sulfate anions not deleterious to such stainless steels? Likewise, why are some solid metals embrit tled catastrophically by same liquid metals (liquid metal embrit tlement) - copper and aluminum, for example, are embrittled by liquid mercury. In short, despite all that we may know about the materials science and mechanics of fracture on a macroscopic scale, we know little about the atomistics of fracture in the absence of environmental interactions and even less when embrittlement phe nomena such as those described above are involved. On the other hand, it is interesting to note that physical chemists and surface chemists also have interests in the same kinds of interactions that occur on an atomic scale when metals such as nickel or platinum are used, for example, as catalysts for chemical reactions.

Atomistic Modeling of Materials Failure

Atomistic Modeling of Materials Failure PDF Author: Markus J. Buehler
Publisher: Springer Science & Business Media
ISBN: 0387764267
Category : Science
Languages : en
Pages : 547

Get Book Here

Book Description
This is an introduction to molecular and atomistic modeling techniques applied to fracture and deformation of solids, focusing on a variety of brittle, ductile, geometrically confined and biological materials. The overview includes computational methods and techniques operating at the atomic scale, and describes how these techniques can be used to model cracks and other deformation mechanisms. The book aims to make new molecular modeling techniques available to a wider community.

General Overview: Atomistics of Environmentally-Induced Fracture

General Overview: Atomistics of Environmentally-Induced Fracture PDF Author: R. M. Latanision
Publisher:
ISBN:
Category :
Languages : en
Pages : 40

Get Book Here

Book Description
The objective of this paper is to provide a general overview of some of the phenomenology related to the atomistics of (particularly, environmentally-induced) fracture and of those areas where interdisciplinary activity involving materials science, mechanics, physical chemistry, surface physics and chemistry and atomic modeling might provide valuable insight.

Fracture of Brittle Solids

Fracture of Brittle Solids PDF Author: Brian R. Lawn
Publisher: Cambridge University Press
ISBN: 9780521409728
Category : Technology & Engineering
Languages : en
Pages : 404

Get Book Here

Book Description
This book is a monograph on the brittle fracture of ceramic materials, in a unified continuum, microstructural and atomistic treatment.

Configurational Forces

Configurational Forces PDF Author: Gerard A. Maugin
Publisher: CRC Press
ISBN: 9781439846131
Category : Mathematics
Languages : en
Pages : 562

Get Book Here

Book Description
Exploring recent developments in continuum mechanics, Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics presents the general framework for configurational forces. It also covers a range of applications in engineering and condensed matter physics. The author presents the fundamentals of accepted standard continuum mechanics, before introducing Eshelby material stress, field theory, variational formulations, Noether’s theorem, and the resulting conservation laws. In the chapter on complex continua, he compares the classical perspective of B.D. Coleman and W. Noll with the viewpoint linked to abstract field theory. He then describes the important notion of local structural rearrangement and its relationship to Eshelby stress. After looking at the relevance of Eshelby stress in the thermodynamic description of singular interfaces, the text focuses on fracture problems, microstructured media, systems with mass exchanges, and electromagnetic deformable media. The concluding chapters discuss the exploitation of the canonical conservation law of momentum in nonlinear wave propagation, the application of canonical-momentum conservation law and material force in numerical schemes, and similarities of fluid mechanics and aerodynamics. Written by a long-time researcher in mechanical engineering, this book provides a detailed treatment of the theory of configurational forces—one of the latest and most fruitful advances in macroscopic field theories. Through many applications, it shows the depth and efficiency of this theory.

Chemistry and Physics of Fracture

Chemistry and Physics of Fracture PDF Author: R.M. Latanision
Publisher: Springer Science & Business Media
ISBN: 9400936656
Category : Technology & Engineering
Languages : en
Pages : 726

Get Book Here

Book Description
For many years it has been recognized that engineering materials that are-tough and ductile can be rendered susceptible to premature fracture through their reaction with the environment. Over 100 years ago, Reynolds associated hydrogen with detrimental effects on the ductility of iron. The "season cracking" of brass has been a known problem for dec ades, but the mechanisms for this stress-corrosion process are only today being elucidated. In more recent times, the mechanical properties of most engineering materials have been shown to be adversely affected by hydrogen embrittlement or stress-corrosion cracking. Early studies of environmental effects on crack growth attempted to identify a unified theory to explain the crack growth behavior of groups of materials in a variety of environments. It is currently understood that there are numerous stress-corrosion processes some of which may be common to several materials, but that the crack growth behavior of a given material is dependent on microstructure, microchemistry, mechanics, surface chemistry, and solution chemistry. Although the mechanism by which various chemical species in the environment may cause cracks to propagate in some materials but not in others is very complex, the net result of all environmentally induced fracture is the reduction in the force and energy associated with the tensile or shear separation of atoms at the crack tip.

Fracture

Fracture PDF Author: Benjamin Lewis Averbach
Publisher:
ISBN:
Category : Fracture mechanics
Languages : en
Pages : 670

Get Book Here

Book Description


Improving Atomistic Simulations to Predict Deformation and Fracture

Improving Atomistic Simulations to Predict Deformation and Fracture PDF Author: Kristopher Learion Baker
Publisher:
ISBN:
Category :
Languages : en
Pages : 150

Get Book Here

Book Description
Atomistic simulations can illuminate detailed mechanisms of brittle and ductile fracture and plasticity. However, there are many limitations to these simulations like short timescales, small spatial scales, and limitations of the discretization. Using molecular dynamics (MD) and multiscale methods, adaptations can be made to allow MD to answer problems relevant to engineers. In the first of three examples, MD is adapted to simulate brittle fracture by changing the discretization and allowing permanent damage between particles. By changing the discretization, specific mechanisms inherent to MD can be suppressed to allow accurate, macroscopic simulations of dynamic fragmentation of brittle materials. Second, the timescale available to MD is extended in a concurrent multiscale method (CADD) combined with accelerated MD. This combined approach allows for microseconds of simulation time at experimentally achievable loading rates. The method is applied to crack opening in aluminum alloys, and the effect of the loading rate on crack growth mechanisms is observed. From the results, it is clear that crack growth mechanisms depend greatly on the rate of the far-field loading. Third, the effect of aging on fatigue crack growth is studied by varying the resistance to dislocation motion in the dislocation dynamics region of CADD. Only in a multiscale simulation like CADD, can dislocation pileups reaching microns into the material interact with the atomic-scale mechanisms at a crack tip. The results of the simulations indicated that increasing the friction force raises the fatigue crack threshold. Also, a transition from stage I fatigue crack growth to stage II fatigue crack growth occurs by dislocations shielding dislocation nucleation on the primary slip plane. These observations support the conclusion that the fatigue crack growth threshold is controlled by the spacing between obstacles to dislocation glide, which is consistent with experimental observations.

Mechanical Properties of Metals

Mechanical Properties of Metals PDF Author: C. W. Lung
Publisher: World Scientific
ISBN: 9789810226220
Category : Technology & Engineering
Languages : en
Pages : 442

Get Book Here

Book Description
The book is intended to describe the basic and newly developed elements of the physics of solids and materials science on mechanical properties of metals with as much continuity as is possible. Particular emphasis has been placed in atomistic and fractal approaches and continuum theory of dislocations is also introduced. Since the book is meant for the two main topics of progress in recent years, some interesting and important topics which have not been discussed or introduced are given in detail.For a long time, pair potentials were used very expensively in simulation studies. They can reproduce usefully total energies for many systems. But when one turns to elastic properties, fracture of surfaces, and the vacancy formation energy, deficiencies and limitations begin to emerge. These limitations of the simple pair potential approximation have been addressed by the development of empirical many-body potentials which is the major theme of our book.Over a decade or more, diverse scientists have recognized that many of the structures common in their experiments have a special kind of geometrical complexity. The key to this progress is the recognition that many random structures obey a symmetry that objects look the same on many different scales of observation. The concept of fractals was introduced by Mandelbrot and applied to fractures by himself and collaborators. Their work pointed to a correlation between toughness and the fractal dimension. Our interest is the fractal aspects of fractured surfaces. We will discuss more in our book.The strain field of a dislocation has a long range part and this part can be discussed rigorously from elasticity theory. Recent progress in elastic strain fields and dislocation mobility were made by Indenbom and Lothe. The elementary essentials will be introduced in our book.

Fracture Nanomechanics

Fracture Nanomechanics PDF Author: Takayuki Kitamura
Publisher: CRC Press
ISBN: 9814241830
Category : Science
Languages : en
Pages : 306

Get Book Here

Book Description
Small structures of the micro/nanometer scale, such as electronic/optic devices and MEMS/NEMS have been developed, and the size of their elements now approaches the nano/atomic scale. This book discuses the fracture behavior of nano/atomic elements (nanofilms, nanowires, and so on) and focuses on the initiation and propagation of interface crack and mechanical instability criterion of atomic structures. This covers the fundamentals and the applicability of the top-down (conventional fracture mechanics to nanoscale) and bottom-up (atomic mechanics including ab initio simulation) concepts. New areas, such as multiphysics characteristics of nanoelements, are introduced as well.