Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations

Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations PDF Author: Ivan Kiguradze
Publisher: Springer
ISBN: 079232059X
Category : Mathematics
Languages : en
Pages : 331

Get Book Here

Book Description
This volume provides a comprehensive review of the developments which have taken place during the last thirty years concerning the asymptotic properties of solutions of nonautonomous ordinary differential equations. The conditions of oscillation of solutions are established, and some general theorems on the classification of equations according to their oscillatory properties are proved. In addition, the conditions are found under which nonlinear equations do not have singular, proper, oscillatory and monotone solutions. The book has five chapters: Chapter I deals with linear differential equations; Chapter II with quasilinear equations; Chapter III with general nonlinear differential equations; and Chapter IV and V deal, respectively, with higher-order and second-order differential equations of the Emden-Fowler type. Each section contains problems, including some which presently remain unsolved. The volume concludes with an extensive list of references. For researchers and graduate students interested in the qualitative theory of differential equations.

Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations

Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations PDF Author: Ivan Kiguradze
Publisher: Springer
ISBN: 079232059X
Category : Mathematics
Languages : en
Pages : 331

Get Book Here

Book Description
This volume provides a comprehensive review of the developments which have taken place during the last thirty years concerning the asymptotic properties of solutions of nonautonomous ordinary differential equations. The conditions of oscillation of solutions are established, and some general theorems on the classification of equations according to their oscillatory properties are proved. In addition, the conditions are found under which nonlinear equations do not have singular, proper, oscillatory and monotone solutions. The book has five chapters: Chapter I deals with linear differential equations; Chapter II with quasilinear equations; Chapter III with general nonlinear differential equations; and Chapter IV and V deal, respectively, with higher-order and second-order differential equations of the Emden-Fowler type. Each section contains problems, including some which presently remain unsolved. The volume concludes with an extensive list of references. For researchers and graduate students interested in the qualitative theory of differential equations.

Asymptotic Integration of Differential and Difference Equations

Asymptotic Integration of Differential and Difference Equations PDF Author: Sigrun Bodine
Publisher: Springer
ISBN: 331918248X
Category : Mathematics
Languages : en
Pages : 411

Get Book Here

Book Description
This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers in asymptotic integration as well to non-experts who are interested in the asymptotic analysis of linear differential and difference equations. It will additionally be of interest to students in mathematics, applied sciences, and engineering. Linear algebra and some basic concepts from advanced calculus are prerequisites.

Asymptotic Expansions for Ordinary Differential Equations

Asymptotic Expansions for Ordinary Differential Equations PDF Author: Wolfgang Wasow
Publisher: Courier Dover Publications
ISBN: 0486824586
Category : Mathematics
Languages : en
Pages : 385

Get Book Here

Book Description
This outstanding text concentrates on the mathematical ideas underlying various asymptotic methods for ordinary differential equations that lead to full, infinite expansions. "A book of great value." — Mathematical Reviews. 1976 revised edition.

Nonlinear Partial Differential Equations

Nonlinear Partial Differential Equations PDF Author: Mi-Ho Giga
Publisher: Springer Science & Business Media
ISBN: 0817646515
Category : Mathematics
Languages : en
Pages : 307

Get Book Here

Book Description
This work will serve as an excellent first course in modern analysis. The main focus is on showing how self-similar solutions are useful in studying the behavior of solutions of nonlinear partial differential equations, especially those of parabolic type. This textbook will be an excellent resource for self-study or classroom use.

Partial Differential Equations V

Partial Differential Equations V PDF Author: M.V. Fedoryuk
Publisher: Springer Science & Business Media
ISBN: 9783540533719
Category : Mathematics
Languages : en
Pages : 262

Get Book Here

Book Description
The six articles in this EMS volume provide an overview of a number of mid-to-late-1990s techniques in the study of the asymptotic behaviour of partial differential equations. These techniques include the Maslov canonical operator, and semiclassical asymptotics of solutions and eigenfunctions.

Asymptotic Solutions of Differential Equations and Their Applications

Asymptotic Solutions of Differential Equations and Their Applications PDF Author: Calvin Hayden Wilcox
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 268

Get Book Here

Book Description


Impulsive Differential Equations

Impulsive Differential Equations PDF Author: Dimit?r Ba?nov
Publisher: World Scientific
ISBN: 9810218230
Category : Mathematics
Languages : en
Pages : 246

Get Book Here

Book Description
The question of the presence of various asymptotic properties of the solutions of ordinary differential equations arises when solving various practical problems. The investigation of these questions is still more important for impulsive differential equations which have a wider field of application than the ordinary ones.The results obtained by treating the asymptotic properties of the solutions of impulsive differential equations can be found in numerous separate articles. The systematized exposition of these results in a separate book will satisfy the growing interest in the problems related to the asymptotic properties of the solutions of impulsive differential equations and their applications.

Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications

Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications PDF Author: Johan Grasman
Publisher: Springer Science & Business Media
ISBN: 9783540644354
Category : Mathematics
Languages : en
Pages : 242

Get Book Here

Book Description
Asymptotic methods are of great importance for practical applications, especially in dealing with boundary value problems for small stochastic perturbations. This book deals with nonlinear dynamical systems perturbed by noise. It addresses problems in which noise leads to qualitative changes, escape from the attraction domain, or extinction in population dynamics. The most likely exit point and expected escape time are determined with singular perturbation methods for the corresponding Fokker-Planck equation. The authors indicate how their techniques relate to the Itô calculus applied to the Langevin equation. The book will be useful to researchers and graduate students.

Functional Differential Equations and Applications

Functional Differential Equations and Applications PDF Author: Alexander Domoshnitsky
Publisher: Springer Nature
ISBN: 9811662975
Category : Mathematics
Languages : en
Pages : 265

Get Book Here

Book Description
This book discusses delay and integro-differential equations from the point of view of the theory of functional differential equations. This book is a collection of selected papers presented at the international conference of Functional Differential Equations and Applications (FDEA-2019), 7th in the series, held at Ariel University, Israel, from August 22–27, 2019. Topics covered in the book include classical properties of functional differential equations as oscillation/non-oscillation, representation of solutions, sign properties of Green's matrices, comparison of solutions, stability, control, analysis of boundary value problems, and applications. The primary audience for this book includes specialists on ordinary, partial and functional differential equations, engineers and doctors dealing with modeling, and researchers in areas of mathematics and engineering.

A Stability Technique for Evolution Partial Differential Equations

A Stability Technique for Evolution Partial Differential Equations PDF Author: Victor A. Galaktionov
Publisher: Springer Science & Business Media
ISBN: 1461220505
Category : Mathematics
Languages : en
Pages : 388

Get Book Here

Book Description
* Introduces a state-of-the-art method for the study of the asymptotic behavior of solutions to evolution partial differential equations. * Written by established mathematicians at the forefront of their field, this blend of delicate analysis and broad application is ideal for a course or seminar in asymptotic analysis and nonlinear PDEs. * Well-organized text with detailed index and bibliography, suitable as a course text or reference volume.