Author: Anatoly M. Vershik
Publisher: Springer
ISBN: 354044890X
Category : Mathematics
Languages : en
Pages : 245
Book Description
At the Summer School Saint Petersburg 2001, the main lecture courses bore on recent progress in asymptotic representation theory: those written up for this volume deal with the theory of representations of infinite symmetric groups, and groups of infinite matrices over finite fields; Riemann-Hilbert problem techniques applied to the study of spectra of random matrices and asymptotics of Young diagrams with Plancherel measure; the corresponding central limit theorems; the combinatorics of modular curves and random trees with application to QFT; free probability and random matrices, and Hecke algebras.
Asymptotic Combinatorics with Applications to Mathematical Physics
Author: Anatoly M. Vershik
Publisher: Springer
ISBN: 354044890X
Category : Mathematics
Languages : en
Pages : 245
Book Description
At the Summer School Saint Petersburg 2001, the main lecture courses bore on recent progress in asymptotic representation theory: those written up for this volume deal with the theory of representations of infinite symmetric groups, and groups of infinite matrices over finite fields; Riemann-Hilbert problem techniques applied to the study of spectra of random matrices and asymptotics of Young diagrams with Plancherel measure; the corresponding central limit theorems; the combinatorics of modular curves and random trees with application to QFT; free probability and random matrices, and Hecke algebras.
Publisher: Springer
ISBN: 354044890X
Category : Mathematics
Languages : en
Pages : 245
Book Description
At the Summer School Saint Petersburg 2001, the main lecture courses bore on recent progress in asymptotic representation theory: those written up for this volume deal with the theory of representations of infinite symmetric groups, and groups of infinite matrices over finite fields; Riemann-Hilbert problem techniques applied to the study of spectra of random matrices and asymptotics of Young diagrams with Plancherel measure; the corresponding central limit theorems; the combinatorics of modular curves and random trees with application to QFT; free probability and random matrices, and Hecke algebras.
Asymptotic Combinatorics with Applications to Mathematical Physics
Author: European Mathematical Summer School (2001 : St. Petersburg)
Publisher: Springer Science & Business Media
ISBN: 3540403124
Category : Asymptotic expansions
Languages : en
Pages : 245
Book Description
At the Summer School Saint Petersburg 2001, the main lecture courses bore on recent progress in asymptotic representation theory: those written up for this volume deal with the theory of representations of infinite symmetric groups, and groups of infinite matrices over finite fields; Riemann-Hilbert problem techniques applied to the study of spectra of random matrices and asymptotics of Young diagrams with Plancherel measure; the corresponding central limit theorems; the combinatorics of modular curves and random trees with application to QFT; free probability and random matrices, and Hecke algebras.
Publisher: Springer Science & Business Media
ISBN: 3540403124
Category : Asymptotic expansions
Languages : en
Pages : 245
Book Description
At the Summer School Saint Petersburg 2001, the main lecture courses bore on recent progress in asymptotic representation theory: those written up for this volume deal with the theory of representations of infinite symmetric groups, and groups of infinite matrices over finite fields; Riemann-Hilbert problem techniques applied to the study of spectra of random matrices and asymptotics of Young diagrams with Plancherel measure; the corresponding central limit theorems; the combinatorics of modular curves and random trees with application to QFT; free probability and random matrices, and Hecke algebras.
Asymptotic Combinatorics with Application to Mathematical Physics
Author: V.A. Malyshev
Publisher: Springer Science & Business Media
ISBN: 9401005753
Category : Science
Languages : en
Pages : 335
Book Description
New and striking results obtained in recent years from an intensive study of asymptotic combinatorics have led to a new, higher level of understanding of related problems: the theory of integrable systems, the Riemann-Hilbert problem, asymptotic representation theory, spectra of random matrices, combinatorics of Young diagrams and permutations, and even some aspects of quantum field theory.
Publisher: Springer Science & Business Media
ISBN: 9401005753
Category : Science
Languages : en
Pages : 335
Book Description
New and striking results obtained in recent years from an intensive study of asymptotic combinatorics have led to a new, higher level of understanding of related problems: the theory of integrable systems, the Riemann-Hilbert problem, asymptotic representation theory, spectra of random matrices, combinatorics of Young diagrams and permutations, and even some aspects of quantum field theory.
Asymptotic Combinatorics with Applications to Mathematical Physics
Author: Anatoly M. Vershik
Publisher:
ISBN: 9783662204078
Category :
Languages : en
Pages : 260
Book Description
Publisher:
ISBN: 9783662204078
Category :
Languages : en
Pages : 260
Book Description
Analytic Combinatorics
Author: Philippe Flajolet
Publisher: Cambridge University Press
ISBN: 1139477161
Category : Mathematics
Languages : en
Pages : 825
Book Description
Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.
Publisher: Cambridge University Press
ISBN: 1139477161
Category : Mathematics
Languages : en
Pages : 825
Book Description
Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.
Special Functions
Author: George E. Andrews
Publisher: Cambridge University Press
ISBN: 9780521789882
Category : Mathematics
Languages : en
Pages : 684
Book Description
An overview of special functions, focusing on the hypergeometric functions and the associated hypergeometric series.
Publisher: Cambridge University Press
ISBN: 9780521789882
Category : Mathematics
Languages : en
Pages : 684
Book Description
An overview of special functions, focusing on the hypergeometric functions and the associated hypergeometric series.
Idempotent Mathematics and Mathematical Physics
Author: Grigoriĭ Lazarevich Litvinov
Publisher: American Mathematical Soc.
ISBN: 0821835386
Category : Mathematics
Languages : en
Pages : 378
Book Description
Idempotent mathematics is a rapidly developing new branch of the mathematical sciences that is closely related to mathematical physics. The existing literature on the subject is vast and includes numerous books and journal papers. A workshop was organized at the Erwin Schrodinger Institute for Mathematical Physics (Vienna) to give a snapshot of modern idempotent mathematics. This volume contains articles stemming from that event. Also included is an introductory paper by G. Litvinov and additional invited contributions. The resulting volume presents a comprehensive overview of the state of the art. It is suitable for graduate students and researchers interested in idempotent mathematics and tropical mathematics.
Publisher: American Mathematical Soc.
ISBN: 0821835386
Category : Mathematics
Languages : en
Pages : 378
Book Description
Idempotent mathematics is a rapidly developing new branch of the mathematical sciences that is closely related to mathematical physics. The existing literature on the subject is vast and includes numerous books and journal papers. A workshop was organized at the Erwin Schrodinger Institute for Mathematical Physics (Vienna) to give a snapshot of modern idempotent mathematics. This volume contains articles stemming from that event. Also included is an introductory paper by G. Litvinov and additional invited contributions. The resulting volume presents a comprehensive overview of the state of the art. It is suitable for graduate students and researchers interested in idempotent mathematics and tropical mathematics.
Selected Papers on Analysis and Related Topics
Author:
Publisher: American Mathematical Soc.
ISBN: 9780821839287
Category : Mathematics
Languages : en
Pages : 190
Book Description
This volume contains translations of papers that originally appeared in the Japanese journal 'Sugaku'. The papers range over a variety of topics, including operator algebras, analysis, and statistics.
Publisher: American Mathematical Soc.
ISBN: 9780821839287
Category : Mathematics
Languages : en
Pages : 190
Book Description
This volume contains translations of papers that originally appeared in the Japanese journal 'Sugaku'. The papers range over a variety of topics, including operator algebras, analysis, and statistics.
Integrable Systems and Random Matrices
Author: Jinho Baik
Publisher: American Mathematical Soc.
ISBN: 0821842404
Category : Mathematics
Languages : en
Pages : 448
Book Description
This volume contains the proceedings of a conference held at the Courant Institute in 2006 to celebrate the 60th birthday of Percy A. Deift. The program reflected the wide-ranging contributions of Professor Deift to analysis with emphasis on recent developments in Random Matrix Theory and integrable systems. The articles in this volume present a broad view on the state of the art in these fields. Topics on random matrices include the distributions and stochastic processes associated with local eigenvalue statistics, as well as their appearance in combinatorial models such as TASEP, last passage percolation and tilings. The contributions in integrable systems mostly deal with focusing NLS, the Camassa-Holm equation and the Toda lattice. A number of papers are devoted to techniques that are used in both fields. These techniques are related to orthogonal polynomials, operator determinants, special functions, Riemann-Hilbert problems, direct and inverse spectral theory. Of special interest is the article of Percy Deift in which he discusses some open problems of Random Matrix Theory and the theory of integrable systems.
Publisher: American Mathematical Soc.
ISBN: 0821842404
Category : Mathematics
Languages : en
Pages : 448
Book Description
This volume contains the proceedings of a conference held at the Courant Institute in 2006 to celebrate the 60th birthday of Percy A. Deift. The program reflected the wide-ranging contributions of Professor Deift to analysis with emphasis on recent developments in Random Matrix Theory and integrable systems. The articles in this volume present a broad view on the state of the art in these fields. Topics on random matrices include the distributions and stochastic processes associated with local eigenvalue statistics, as well as their appearance in combinatorial models such as TASEP, last passage percolation and tilings. The contributions in integrable systems mostly deal with focusing NLS, the Camassa-Holm equation and the Toda lattice. A number of papers are devoted to techniques that are used in both fields. These techniques are related to orthogonal polynomials, operator determinants, special functions, Riemann-Hilbert problems, direct and inverse spectral theory. Of special interest is the article of Percy Deift in which he discusses some open problems of Random Matrix Theory and the theory of integrable systems.
C^\infinity - Differentiable Spaces
Author: Juan A. Navarro González
Publisher: Springer Science & Business Media
ISBN: 9783540200727
Category : Mathematics
Languages : en
Pages : 212
Book Description
The volume develops the foundations of differential geometry so as to include finite-dimensional spaces with singularities and nilpotent functions, at the same level as is standard in the elementary theory of schemes and analytic spaces. The theory of differentiable spaces is developed to the point of providing a handy tool including arbitrary base changes (hence fibred products, intersections and fibres of morphisms), infinitesimal neighbourhoods, sheaves of relative differentials, quotients by actions of compact Lie groups and a theory of sheaves of Fréchet modules paralleling the useful theory of quasi-coherent sheaves on schemes. These notes fit naturally in the theory of C^\infinity-rings and C^\infinity-schemes, as well as in the framework of Spallek’s C^\infinity-standard differentiable spaces, and they require a certain familiarity with commutative algebra, sheaf theory, rings of differentiable functions and Fréchet spaces.
Publisher: Springer Science & Business Media
ISBN: 9783540200727
Category : Mathematics
Languages : en
Pages : 212
Book Description
The volume develops the foundations of differential geometry so as to include finite-dimensional spaces with singularities and nilpotent functions, at the same level as is standard in the elementary theory of schemes and analytic spaces. The theory of differentiable spaces is developed to the point of providing a handy tool including arbitrary base changes (hence fibred products, intersections and fibres of morphisms), infinitesimal neighbourhoods, sheaves of relative differentials, quotients by actions of compact Lie groups and a theory of sheaves of Fréchet modules paralleling the useful theory of quasi-coherent sheaves on schemes. These notes fit naturally in the theory of C^\infinity-rings and C^\infinity-schemes, as well as in the framework of Spallek’s C^\infinity-standard differentiable spaces, and they require a certain familiarity with commutative algebra, sheaf theory, rings of differentiable functions and Fréchet spaces.