Aspects of Differential Geometry IV

Aspects of Differential Geometry IV PDF Author: Esteban Calviño-Louzao
Publisher: Springer Nature
ISBN: 3031024168
Category : Mathematics
Languages : en
Pages : 149

Get Book Here

Book Description
Book IV continues the discussion begun in the first three volumes. Although it is aimed at first-year graduate students, it is also intended to serve as a basic reference for people working in affine differential geometry. It also should be accessible to undergraduates interested in affine differential geometry. We are primarily concerned with the study of affine surfaces {which} are locally homogeneous. We discuss affine gradient Ricci solitons, affine Killing vector fields, and geodesic completeness. Opozda has classified the affine surface geometries which are locally homogeneous; we follow her classification. Up to isomorphism, there are two simply connected Lie groups of dimension 2. The translation group R2 is Abelian and the + group\index{ax+b group} is non-Abelian. The first chapter presents foundational material. The second chapter deals with Type surfaces. These are the left-invariant affine geometries on R2. Associating to each Type surface the space of solutions to the quasi-Einstein equation corresponding to the eigenvalue =-1$ turns out to be a very powerful technique and plays a central role in our study as it links an analytic invariant with the underlying geometry of the surface. The third chapter deals with Type surfaces; these are the left-invariant affine geometries on the + group. These geometries form a very rich family which is only partially understood. The only remaining homogeneous geometry is that of the sphere 2. The fourth chapter presents relations between the geometry of an affine surface and the geometry of the cotangent bundle equipped with the neutral signature metric of the modified Riemannian extension.

Aspects of Differential Geometry IV

Aspects of Differential Geometry IV PDF Author: Esteban Calviño-Louzao
Publisher: Springer Nature
ISBN: 3031024168
Category : Mathematics
Languages : en
Pages : 149

Get Book Here

Book Description
Book IV continues the discussion begun in the first three volumes. Although it is aimed at first-year graduate students, it is also intended to serve as a basic reference for people working in affine differential geometry. It also should be accessible to undergraduates interested in affine differential geometry. We are primarily concerned with the study of affine surfaces {which} are locally homogeneous. We discuss affine gradient Ricci solitons, affine Killing vector fields, and geodesic completeness. Opozda has classified the affine surface geometries which are locally homogeneous; we follow her classification. Up to isomorphism, there are two simply connected Lie groups of dimension 2. The translation group R2 is Abelian and the + group\index{ax+b group} is non-Abelian. The first chapter presents foundational material. The second chapter deals with Type surfaces. These are the left-invariant affine geometries on R2. Associating to each Type surface the space of solutions to the quasi-Einstein equation corresponding to the eigenvalue =-1$ turns out to be a very powerful technique and plays a central role in our study as it links an analytic invariant with the underlying geometry of the surface. The third chapter deals with Type surfaces; these are the left-invariant affine geometries on the + group. These geometries form a very rich family which is only partially understood. The only remaining homogeneous geometry is that of the sphere 2. The fourth chapter presents relations between the geometry of an affine surface and the geometry of the cotangent bundle equipped with the neutral signature metric of the modified Riemannian extension.

Topics in Differential Geometry

Topics in Differential Geometry PDF Author: Peter W. Michor
Publisher: American Mathematical Soc.
ISBN: 0821820036
Category : Mathematics
Languages : en
Pages : 510

Get Book Here

Book Description
"This book treats the fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and symplectic and Poisson geometry. It gives the careful reader working knowledge in a wide range of topics of modern coordinate-free differential geometry in not too many pages. A prerequisite for using this book is a good knowledge of undergraduate analysis and linear algebra."--BOOK JACKET.

Modern Differential Geometry for Physicists

Modern Differential Geometry for Physicists PDF Author: Chris J. Isham
Publisher: Allied Publishers
ISBN: 9788177643169
Category : Geometry, Differential
Languages : en
Pages : 308

Get Book Here

Book Description


Aspects of Differential Geometry IV

Aspects of Differential Geometry IV PDF Author: Esteban Calviño-Louzao
Publisher: Morgan & Claypool Publishers
ISBN: 1681735644
Category : Mathematics
Languages : en
Pages : 169

Get Book Here

Book Description
Book IV continues the discussion begun in the first three volumes. Although it is aimed at first-year graduate students, it is also intended to serve as a basic reference for people working in affine differential geometry. It also should be accessible to undergraduates interested in affine differential geometry. We are primarily concerned with the study of affine surfaces which are locally homogeneous. We discuss affine gradient Ricci solitons, affine Killing vector fields, and geodesic completeness. Opozda has classified the affine surface geometries which are locally homogeneous; we follow her classification. Up to isomorphism, there are two simply connected Lie groups of dimension 2. The translation group R2 is Abelian and the ???? + ?? group is non-Abelian. The first chapter presents foundational material. The second chapter deals with Type ?? surfaces. These are the left-invariant affine geometries on R2. Associating to each Type ?? surface the space of solutions to the quasi-Einstein equation corresponding to the eigenvalue ?? = -1 turns out to be a very powerful technique and plays a central role in our study as it links an analytic invariant with the underlying geometry of the surface. The third chapter deals with Type ?? surfaces; these are the left-invariant affine geometries on the ???? + ?? group. These geometries form a very rich family which is only partially understood. The only remaining homogeneous geometry is that of the sphere ??2. The fourth chapter presents relations between the geometry of an affine surface and the geometry of the cotangent bundle equipped with the neutral signature metric of the modified Riemannian extension.

Geometry IV

Geometry IV PDF Author: Yurĭi Grigorevǐc Reshetnyak
Publisher: Springer Science & Business Media
ISBN: 9783540547013
Category : Mathematics
Languages : en
Pages : 274

Get Book Here

Book Description
This book contains two surveys on modern research into non-regular Riemannian geometry, carried out mostly by Russian mathematicians. Coverage examines two-dimensional Riemannian manifolds of bounded curvature and metric spaces whose curvature lies between two given constants. This book will be immensely useful to graduate students and researchers in geometry, in particular Riemannian geometry.

Differential Geometry in the Large

Differential Geometry in the Large PDF Author: Owen Dearricott
Publisher: Cambridge University Press
ISBN: 1108812813
Category : Mathematics
Languages : en
Pages : 401

Get Book Here

Book Description
From Ricci flow to GIT, physics to curvature bounds, Sasaki geometry to almost formality. This is differential geometry at large.

An Introduction to Proofs with Set Theory

An Introduction to Proofs with Set Theory PDF Author: Daniel Ashlock
Publisher: Springer Nature
ISBN: 3031024265
Category : Mathematics
Languages : en
Pages : 233

Get Book Here

Book Description
This text is intended as an introduction to mathematical proofs for students. It is distilled from the lecture notes for a course focused on set theory subject matter as a means of teaching proofs. Chapter 1 contains an introduction and provides a brief summary of some background material students may be unfamiliar with. Chapters 2 and 3 introduce the basics of logic for students not yet familiar with these topics. Included is material on Boolean logic, propositions and predicates, logical operations, truth tables, tautologies and contradictions, rules of inference and logical arguments. Chapter 4 introduces mathematical proofs, including proof conventions, direct proofs, proof-by-contradiction, and proof-by-contraposition. Chapter 5 introduces the basics of naive set theory, including Venn diagrams and operations on sets. Chapter 6 introduces mathematical induction and recurrence relations. Chapter 7 introduces set-theoretic functions and covers injective, surjective, and bijective functions, as well as permutations. Chapter 8 covers the fundamental properties of the integers including primes, unique factorization, and Euclid's algorithm. Chapter 9 is an introduction to combinatorics; topics included are combinatorial proofs, binomial and multinomial coefficients, the Inclusion-Exclusion principle, and counting the number of surjective functions between finite sets. Chapter 10 introduces relations and covers equivalence relations and partial orders. Chapter 11 covers number bases, number systems, and operations. Chapter 12 covers cardinality, including basic results on countable and uncountable infinities, and introduces cardinal numbers. Chapter 13 expands on partial orders and introduces ordinal numbers. Chapter 14 examines the paradoxes of naive set theory and introduces and discusses axiomatic set theory. This chapter also includes Cantor's Paradox, Russel's Paradox, a discussion of axiomatic theories, an exposition on Zermelo‒Fraenkel Set Theory with the Axiom of Choice, and a brief explanation of Gödel's Incompleteness Theorems.

Probability and Statistics for STEM

Probability and Statistics for STEM PDF Author: E.N. Barron
Publisher: Springer Nature
ISBN: 3031024273
Category : Mathematics
Languages : en
Pages : 243

Get Book Here

Book Description
One of the most important subjects for all engineers and scientists is probability and statistics. This book presents the basics of the essential topics in probability and statistics from a rigorous standpoint. The basics of probability underlying all statistics is presented first and then we cover the essential topics in statistics, confidence intervals, hypothesis testing, and linear regression. This book is suitable for any engineer or scientist who is comfortable with calculus and is meant to be covered in a one-semester format.

A First Course in Complex Analysis

A First Course in Complex Analysis PDF Author: Allan R. Willms
Publisher: Morgan & Claypool Publishers
ISBN: 1636393152
Category : Mathematics
Languages : en
Pages : 237

Get Book Here

Book Description
This book introduces complex analysis and is appropriate for a first course in the subject at typically the third-year University level. It introduces the exponential function very early but does so rigorously. It covers the usual topics of functions, differentiation, analyticity, contour integration, the theorems of Cauchy and their many consequences, Taylor and Laurent series, residue theory, the computation of certain improper real integrals, and a brief introduction to conformal mapping. Throughout the text an emphasis is placed on geometric properties of complex numbers and visualization of complex mappings.

Inverse Obstacle Scattering with Non-Over-Determined Scattering Data

Inverse Obstacle Scattering with Non-Over-Determined Scattering Data PDF Author: Alexander G. Ramm
Publisher: Springer Nature
ISBN: 3031024184
Category : Mathematics
Languages : en
Pages : 53

Get Book Here

Book Description
The inverse obstacle scattering problem consists of finding the unknown surface of a body (obstacle) from the scattering (;;), where (;;) is the scattering amplitude, ; 2 is the direction of the scattered, incident wave, respectively, 2 is the unit sphere in the R3 and k > 0 is the modulus of the wave vector. The scattering data is called non-over-determined if its dimensionality is the same as the one of the unknown object. By the dimensionality one understands the minimal number of variables of a function describing the data or an object. In an inverse obstacle scattering problem this number is 2, and an example of non-over-determined data is () := (;0;0). By sub-index 0 a fixed value of a variable is denoted. It is proved in this book that the data (), known for all in an open subset of 2, determines uniquely the surface and the boundary condition on . This condition can be the Dirichlet, or the Neumann, or the impedance type. The above uniqueness theorem is of principal importance because the non-over-determined data are the minimal data determining uniquely the unknown . There were no such results in the literature, therefore the need for this book arose. This book contains a self-contained proof of the existence and uniqueness of the scattering solution for rough surfaces.