Artificial Neural Networks and Machine Learning -- ICANN 2013

Artificial Neural Networks and Machine Learning -- ICANN 2013 PDF Author: Valeri Mladenov
Publisher: Springer
ISBN: 3642407285
Category : Computers
Languages : en
Pages : 660

Get Book Here

Book Description
The book constitutes the proceedings of the 23rd International Conference on Artificial Neural Networks, ICANN 2013, held in Sofia, Bulgaria, in September 2013. The 78 papers included in the proceedings were carefully reviewed and selected from 128 submissions. The focus of the papers is on following topics: neurofinance graphical network models, brain machine interfaces, evolutionary neural networks, neurodynamics, complex systems, neuroinformatics, neuroengineering, hybrid systems, computational biology, neural hardware, bioinspired embedded systems, and collective intelligence.

Artificial Neural Networks and Machine Learning -- ICANN 2013

Artificial Neural Networks and Machine Learning -- ICANN 2013 PDF Author: Valeri Mladenov
Publisher: Springer
ISBN: 3642407285
Category : Computers
Languages : en
Pages : 660

Get Book Here

Book Description
The book constitutes the proceedings of the 23rd International Conference on Artificial Neural Networks, ICANN 2013, held in Sofia, Bulgaria, in September 2013. The 78 papers included in the proceedings were carefully reviewed and selected from 128 submissions. The focus of the papers is on following topics: neurofinance graphical network models, brain machine interfaces, evolutionary neural networks, neurodynamics, complex systems, neuroinformatics, neuroengineering, hybrid systems, computational biology, neural hardware, bioinspired embedded systems, and collective intelligence.

Artificial Neural Networks

Artificial Neural Networks PDF Author: Petia Koprinkova-Hristova
Publisher: Springer
ISBN: 3319099035
Category : Technology & Engineering
Languages : en
Pages : 487

Get Book Here

Book Description
The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new algorithms for prototype selection, and group structure discovering. Moreover, the book discusses one-class support vector machines for pattern recognition, handwritten digit recognition, time series forecasting and classification, and anomaly identification in data analytics and automated data analysis. By presenting the state-of-the-art and discussing the current challenges in the fields of artificial neural networks, bioinformatics and neuroinformatics, the book is intended to promote the implementation of new methods and improvement of existing ones, and to support advanced students, researchers and professionals in their daily efforts to identify, understand and solve a number of open questions in these fields.

Artificial Neural Networks and Machine Learning -- ICANN 2014

Artificial Neural Networks and Machine Learning -- ICANN 2014 PDF Author: Stefan Wermter
Publisher: Springer
ISBN: 3319111795
Category : Computers
Languages : en
Pages : 874

Get Book Here

Book Description
The book constitutes the proceedings of the 24th International Conference on Artificial Neural Networks, ICANN 2014, held in Hamburg, Germany, in September 2014. The 107 papers included in the proceedings were carefully reviewed and selected from 173 submissions. The focus of the papers is on following topics: recurrent networks; competitive learning and self-organisation; clustering and classification; trees and graphs; human-machine interaction; deep networks; theory; reinforcement learning and action; vision; supervised learning; dynamical models and time series; neuroscience; and applications.

Machine Learning

Machine Learning PDF Author: Marco Gori
Publisher: Morgan Kaufmann
ISBN: 9780081006597
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
Machine Learning: A Constraint-Based Approach provides readers with a refreshing look at the basic models and algorithms of machine learning, with an emphasis on current topics of interest that includes neural networks and kernel machines. The book presents the information in a truly unified manner that is based on the notion of learning from environmental constraints. While regarding symbolic knowledge bases as a collection of constraints, the book draws a path towards a deep integration with machine learning that relies on the idea of adopting multivalued logic formalisms, like in fuzzy systems. A special attention is reserved to deep learning, which nicely fits the constrained- based approach followed in this book. This book presents a simpler unified notion of regularization, which is strictly connected with the parsimony principle, and includes many solved exercises that are classified according to the Donald Knuth ranking of difficulty, which essentially consists of a mix of warm-up exercises that lead to deeper research problems. A software simulator is also included.

Machine Learning

Machine Learning PDF Author: Marco Gori
Publisher: Morgan Kaufmann
ISBN: 0081006705
Category : Computers
Languages : en
Pages : 582

Get Book Here

Book Description
Machine Learning: A Constraint-Based Approach provides readers with a refreshing look at the basic models and algorithms of machine learning, with an emphasis on current topics of interest that includes neural networks and kernel machines. The book presents the information in a truly unified manner that is based on the notion of learning from environmental constraints. While regarding symbolic knowledge bases as a collection of constraints, the book draws a path towards a deep integration with machine learning that relies on the idea of adopting multivalued logic formalisms, like in fuzzy systems. A special attention is reserved to deep learning, which nicely fits the constrained- based approach followed in this book. This book presents a simpler unified notion of regularization, which is strictly connected with the parsimony principle, and includes many solved exercises that are classified according to the Donald Knuth ranking of difficulty, which essentially consists of a mix of warm-up exercises that lead to deeper research problems. A software simulator is also included. - Presents fundamental machine learning concepts, such as neural networks and kernel machines in a unified manner - Provides in-depth coverage of unsupervised and semi-supervised learning - Includes a software simulator for kernel machines and learning from constraints that also includes exercises to facilitate learning - Contains 250 solved examples and exercises chosen particularly for their progression of difficulty from simple to complex

Artificial Neural Networks and Machine Learning – ICANN 2020

Artificial Neural Networks and Machine Learning – ICANN 2020 PDF Author: Igor Farkaš
Publisher: Springer Nature
ISBN: 3030616096
Category : Computers
Languages : en
Pages : 901

Get Book Here

Book Description
The proceedings set LNCS 12396 and 12397 constitute the proceedings of the 29th International Conference on Artificial Neural Networks, ICANN 2020, held in Bratislava, Slovakia, in September 2020.* The total of 139 full papers presented in these proceedings was carefully reviewed and selected from 249 submissions. They were organized in 2 volumes focusing on topics such as adversarial machine learning, bioinformatics and biosignal analysis, cognitive models, neural network theory and information theoretic learning, and robotics and neural models of perception and action. *The conference was postponed to 2021 due to the COVID-19 pandemic.

Proceedings of the UNIfied Conference of DAMAS, IncoME and TEPEN Conferences (UNIfied 2023)

Proceedings of the UNIfied Conference of DAMAS, IncoME and TEPEN Conferences (UNIfied 2023) PDF Author: Andrew D. Ball
Publisher: Springer Nature
ISBN: 3031494210
Category :
Languages : en
Pages : 1186

Get Book Here

Book Description


Data Analytics and AI

Data Analytics and AI PDF Author: Jay Liebowitz
Publisher: CRC Press
ISBN: 1000094650
Category : Computers
Languages : en
Pages : 267

Get Book Here

Book Description
Analytics and artificial intelligence (AI), what are they good for? The bandwagon keeps answering, absolutely everything! Analytics and artificial intelligence have captured the attention of everyone from top executives to the person in the street. While these disciplines have a relatively long history, within the last ten or so years they have exploded into corporate business and public consciousness. Organizations have rushed to embrace data-driven decision making. Companies everywhere are turning out products boasting that "artificial intelligence is included." We are indeed living in exciting times. The question we need to ask is, do we really know how to get business value from these exciting tools? Unfortunately, both the analytics and AI communities have not done a great job in collaborating and communicating with each other to build the necessary synergies. This book bridges the gap between these two critical fields. The book begins by explaining the commonalities and differences in the fields of data science, artificial intelligence, and autonomy by giving a historical perspective for each of these fields, followed by exploration of common technologies and current trends in each field. The book also readers introduces to applications of deep learning in industry with an overview of deep learning and its key architectures, as well as a survey and discussion of the main applications of deep learning. The book also presents case studies to illustrate applications of AI and analytics. These include a case study from the healthcare industry and an investigation of a digital transformation enabled by AI and analytics transforming a product-oriented company into one delivering solutions and services. The book concludes with a proposed AI-informed data analytics life cycle to be applied to unstructured data.

Proceedings

Proceedings PDF Author: Michel Verleysen
Publisher: Presses universitaires de Louvain
ISBN: 2875870157
Category :
Languages : en
Pages : 615

Get Book Here

Book Description


Intelligent Systems and Applications

Intelligent Systems and Applications PDF Author: Kohei Arai
Publisher: Springer
ISBN: 3030010546
Category : Technology & Engineering
Languages : en
Pages : 1441

Get Book Here

Book Description
Gathering the Proceedings of the 2018 Intelligent Systems Conference (IntelliSys 2018), this book offers a remarkable collection of chapters covering a wide range of topics in intelligent systems and computing, and their real-world applications. The Conference attracted a total of 568 submissions from pioneering researchers, scientists, industrial engineers, and students from all around the world. These submissions underwent a double-blind peer review process, after which 194 (including 13 poster papers) were selected to be included in these proceedings. As intelligent systems continue to replace and sometimes outperform human intelligence in decision-making processes, they have made it possible to tackle many problems more effectively. This branching out of computational intelligence in several directions, and the use of intelligent systems in everyday applications, have created the need for such an international conference, which serves as a venue for reporting on cutting-edge innovations and developments. This book collects both theory and application-based chapters on all aspects of artificial intelligence, from classical to intelligent scope. Readers are sure to find the book both interesting and valuable, as it presents state-of-the-art intelligent methods and techniques for solving real-world problems, along with a vision of future research directions.