Artificial Intelligence with Uncertainty

Artificial Intelligence with Uncertainty PDF Author: Deyi Li
Publisher: CRC Press
ISBN: 1498776272
Category : Computers
Languages : en
Pages : 311

Get Book Here

Book Description
This book develops a framework that shows how uncertainty in Artificial Intelligence (AI) expands and generalizes traditional AI. It explores the uncertainties of knowledge and intelligence. The authors focus on the importance of natural language – the carrier of knowledge and intelligence, and introduce efficient physical methods for data mining amd control. In this new edition, we have more in-depth description of the models and methods, of which the mathematical properties are proved strictly which make these theories and methods more complete. The authors also highlight their latest research results.

Artificial Intelligence with Uncertainty

Artificial Intelligence with Uncertainty PDF Author: Deyi Li
Publisher: CRC Press
ISBN: 1498776272
Category : Computers
Languages : en
Pages : 311

Get Book Here

Book Description
This book develops a framework that shows how uncertainty in Artificial Intelligence (AI) expands and generalizes traditional AI. It explores the uncertainties of knowledge and intelligence. The authors focus on the importance of natural language – the carrier of knowledge and intelligence, and introduce efficient physical methods for data mining amd control. In this new edition, we have more in-depth description of the models and methods, of which the mathematical properties are proved strictly which make these theories and methods more complete. The authors also highlight their latest research results.

Artificial Intelligence with Uncertainty

Artificial Intelligence with Uncertainty PDF Author: Deyi Li
Publisher: CRC Press
ISBN: 1584889993
Category : Business & Economics
Languages : en
Pages : 378

Get Book Here

Book Description
The information deluge currently assaulting us in the 21st century is having a profound impact on our lifestyles and how we work. We must constantly separate trustworthy and required information from the massive amount of data we encounter each day. Through mathematical theories, models, and experimental computations, Artificial Intelligence with U

Uncertainty in Artificial Intelligence

Uncertainty in Artificial Intelligence PDF Author: David Heckerman
Publisher: Morgan Kaufmann
ISBN: 1483214516
Category : Computers
Languages : en
Pages : 554

Get Book Here

Book Description
Uncertainty in Artificial Intelligence contains the proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence held at the Catholic University of America in Washington, DC, on July 9-11, 1993. The papers focus on methods of reasoning and decision making under uncertainty as applied to problems in artificial intelligence (AI) and cover topics ranging from knowledge acquisition and automated model construction to learning, planning, temporal reasoning, and machine vision. Comprised of 66 chapters, this book begins with a discussion on causality in Bayesian belief networks before turning to a decision theoretic account of conditional ought statements that rectifies glaring deficiencies in classical deontic logic and forms a sound basis for qualitative decision theory. Subsequent chapters explore trade-offs in constructing and evaluating temporal influence diagrams; normative engineering risk management systems; additive belief-network models; and sensitivity analysis for probability assessments in Bayesian networks. Automated model construction and learning as well as algorithms for inference and decision making are also considered. This monograph will be of interest to both students and practitioners in the fields of AI and computer science.

Subjective Logic

Subjective Logic PDF Author: Audun Jøsang
Publisher: Springer
ISBN: 3319423371
Category : Computers
Languages : en
Pages : 355

Get Book Here

Book Description
This is the first comprehensive treatment of subjective logic and all its operations. The author developed the approach, and in this book he first explains subjective opinions, opinion representation, and decision-making under vagueness and uncertainty, and he then offers a full definition of subjective logic, harmonising the key notations and formalisms, concluding with chapters on trust networks and subjective Bayesian networks, which when combined form general subjective networks. The author shows how real-world situations can be realistically modelled with regard to how situations are perceived, with conclusions that more correctly reflect the ignorance and uncertainties that result from partially uncertain input arguments. The book will help researchers and practitioners to advance, improve and apply subjective logic to build powerful artificial reasoning models and tools for solving real-world problems. A good grounding in discrete mathematics is a prerequisite.

Computer Information Systems and Industrial Management

Computer Information Systems and Industrial Management PDF Author: Khalid Saeed
Publisher: Springer
ISBN: 3642409253
Category : Computers
Languages : en
Pages : 541

Get Book Here

Book Description
This book constitutes the proceedings of the 12th IFIP TC 8 International Conference, CISIM 2013, held in Cracow, Poland, in September 2013. The 44 papers presented in this volume were carefully reviewed and selected from over 60 submissions. They are organized in topical sections on biometric and biomedical applications; pattern recognition and image processing; various aspects of computer security, networking, algorithms, and industrial applications. The book also contains full papers of a keynote speech and the invited talk.

The Death of Uncertainty

The Death of Uncertainty PDF Author: Michael Tan
Publisher:
ISBN: 9781641374026
Category :
Languages : en
Pages :

Get Book Here

Book Description


Artificial Intelligence with Uncertainty

Artificial Intelligence with Uncertainty PDF Author: Deyi Li
Publisher: CRC Press
ISBN: 1315349833
Category : Mathematics
Languages : en
Pages : 291

Get Book Here

Book Description
This book develops a framework that shows how uncertainty in Artificial Intelligence (AI) expands and generalizes traditional AI. It explores the uncertainties of knowledge and intelligence. The authors focus on the importance of natural language – the carrier of knowledge and intelligence, and introduce efficient physical methods for data mining amd control. In this new edition, we have more in-depth description of the models and methods, of which the mathematical properties are proved strictly which make these theories and methods more complete. The authors also highlight their latest research results.

Uncertainty and Vagueness in Knowledge Based Systems

Uncertainty and Vagueness in Knowledge Based Systems PDF Author: Rudolf Kruse
Publisher: Springer Science & Business Media
ISBN: 3642767028
Category : Computers
Languages : en
Pages : 495

Get Book Here

Book Description
The primary aim of this monograph is to provide a formal framework for the representation and management of uncertainty and vagueness in the field of artificial intelligence. It puts particular emphasis on a thorough analysis of these phenomena and on the development of sound mathematical modeling approaches. Beyond this theoretical basis the scope of the book includes also implementational aspects and a valuation of existing models and systems. The fundamental ambition of this book is to show that vagueness and un certainty can be handled adequately by using measure-theoretic methods. The presentation of applicable knowledge representation formalisms and reasoning algorithms substantiates the claim that efficiency requirements do not necessar ily require renunciation of an uncompromising mathematical modeling. These results are used to evaluate systems based on probabilistic methods as well as on non-standard concepts such as certainty factors, fuzzy sets or belief functions. The book is intended to be self-contained and addresses researchers and practioneers in the field of knowledge based systems. It is in particular suit able as a textbook for graduate-level students in AI, operations research and applied probability. A solid mathematical background is necessary for reading this book. Essential parts of the material have been the subject of courses given by the first author for students of computer science and mathematics held since 1984 at the University in Braunschweig.

Uncertainty Theory

Uncertainty Theory PDF Author: Baoding Liu
Publisher: Springer Science & Business Media
ISBN: 3642139582
Category : Computers
Languages : en
Pages : 350

Get Book Here

Book Description
Uncertainty theory is a branch of mathematics based on normality, monotonicity, self-duality, countable subadditivity, and product measure axioms. Uncertainty is any concept that satisfies the axioms of uncertainty theory. Thus uncertainty is neither randomness nor fuzziness. It is also known from some surveys that a lot of phenomena do behave like uncertainty. How do we model uncertainty? How do we use uncertainty theory? In order to answer these questions, this book provides a self-contained, comprehensive and up-to-date presentation of uncertainty theory, including uncertain programming, uncertain risk analysis, uncertain reliability analysis, uncertain process, uncertain calculus, uncertain differential equation, uncertain logic, uncertain entailment, and uncertain inference. Mathematicians, researchers, engineers, designers, and students in the field of mathematics, information science, operations research, system science, industrial engineering, computer science, artificial intelligence, finance, control, and management science will find this work a stimulating and useful reference.

Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical Image-Based Procedures

Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical Image-Based Procedures PDF Author: Hayit Greenspan
Publisher: Springer Nature
ISBN: 3030326896
Category : Computers
Languages : en
Pages : 202

Get Book Here

Book Description
This book constitutes the refereed proceedings of the First International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2019, and the 8th International Workshop on Clinical Image-Based Procedures, CLIP 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. For UNSURE 2019, 8 papers from 15 submissions were accepted for publication. They focus on developing awareness and encouraging research in the field of uncertainty modelling to enable safe implementation of machine learning tools in the clinical world. CLIP 2019 accepted 11 papers from the 15 submissions received. The workshops provides a forum for work centred on specific clinical applications, including techniques and procedures based on comprehensive clinical image and other data.