Author: Yashwant Pathak
Publisher: CRC Press
ISBN: 1000952754
Category : Science
Languages : en
Pages : 275
Book Description
The authors aim to shed light on the practicality of using machine learning in finding complex chemoinformatics and bioinformatics applications as well as identifiying AI in biological and chemical data points. The chapters are designed in such a way that they highlight the important role of AI in chemistry and bioinformatics particularly for the classification of diseases, selection of features and compounds, dimensionality reduction and more. In addition, they assist in the organization and optimal use of data points generated from experiments performed using AI techniques. This volume discusses the development of automated tools and techniques to aid in research plans. Features Covers AI applications in bioinformatics and chemoinformatics Demystifies the involvement of AI in generating biological and chemical data Provides an Introduction to basic and advanced chemoinformatics computational tools Presents a chemical biology based toolset for artificial intelligence usage in drug design Discusses computational methods in cancer, genome mapping, and stem cell research
Artificial Intelligence in Bioinformatics and Chemoinformatics
Author: Yashwant Pathak
Publisher: CRC Press
ISBN: 1000952754
Category : Science
Languages : en
Pages : 275
Book Description
The authors aim to shed light on the practicality of using machine learning in finding complex chemoinformatics and bioinformatics applications as well as identifiying AI in biological and chemical data points. The chapters are designed in such a way that they highlight the important role of AI in chemistry and bioinformatics particularly for the classification of diseases, selection of features and compounds, dimensionality reduction and more. In addition, they assist in the organization and optimal use of data points generated from experiments performed using AI techniques. This volume discusses the development of automated tools and techniques to aid in research plans. Features Covers AI applications in bioinformatics and chemoinformatics Demystifies the involvement of AI in generating biological and chemical data Provides an Introduction to basic and advanced chemoinformatics computational tools Presents a chemical biology based toolset for artificial intelligence usage in drug design Discusses computational methods in cancer, genome mapping, and stem cell research
Publisher: CRC Press
ISBN: 1000952754
Category : Science
Languages : en
Pages : 275
Book Description
The authors aim to shed light on the practicality of using machine learning in finding complex chemoinformatics and bioinformatics applications as well as identifiying AI in biological and chemical data points. The chapters are designed in such a way that they highlight the important role of AI in chemistry and bioinformatics particularly for the classification of diseases, selection of features and compounds, dimensionality reduction and more. In addition, they assist in the organization and optimal use of data points generated from experiments performed using AI techniques. This volume discusses the development of automated tools and techniques to aid in research plans. Features Covers AI applications in bioinformatics and chemoinformatics Demystifies the involvement of AI in generating biological and chemical data Provides an Introduction to basic and advanced chemoinformatics computational tools Presents a chemical biology based toolset for artificial intelligence usage in drug design Discusses computational methods in cancer, genome mapping, and stem cell research
Chemoinformatics and Advanced Machine Learning Perspectives: Complex Computational Methods and Collaborative Techniques
Author: Lodhi, Huma
Publisher: IGI Global
ISBN: 1615209123
Category : Computers
Languages : en
Pages : 418
Book Description
"This book is a timely compendium of key elements that are crucial for the study of machine learning in chemoinformatics, giving an overview of current research in machine learning and their applications to chemoinformatics tasks"--Provided by publisher.
Publisher: IGI Global
ISBN: 1615209123
Category : Computers
Languages : en
Pages : 418
Book Description
"This book is a timely compendium of key elements that are crucial for the study of machine learning in chemoinformatics, giving an overview of current research in machine learning and their applications to chemoinformatics tasks"--Provided by publisher.
Ethical Issues in AI for Bioinformatics and Chemoinformatics
Author: Yashwant V. Pathak
Publisher: CRC Press
ISBN: 1000996042
Category : Science
Languages : en
Pages : 224
Book Description
This unique volume presents AI in relation to ethical points of view in handling big data sets. Issues such as algorithmic biases, discrimination for specific patterns and privacy breaches may sometimes be skewed to affect research results so that certain fields to appear more appealing to funding agencies. The discussion on the ethics of AI is highly complex due to the involvement of many international stakeholders such as the UN, OECD, parliaments, industry groups, professional bodies, and individual companies. The issue of reliability is addressed including the emergence of synthetic life, 5G networks, intermingling of human artificial intelligence, nano-robots and cyber security tools. Features Discusses artificial intelligence and ethics, the challenges and opportunities Presents the issue of reliability in the emergence of synthetic life, 5G networks, intermingling of human artificial intelligence, nano-robots, and cyber security tools Ethical responsibility and reasoning for using AI in Big Data Addresses practicing medicine and ethical issues when applying artificial intelligence
Publisher: CRC Press
ISBN: 1000996042
Category : Science
Languages : en
Pages : 224
Book Description
This unique volume presents AI in relation to ethical points of view in handling big data sets. Issues such as algorithmic biases, discrimination for specific patterns and privacy breaches may sometimes be skewed to affect research results so that certain fields to appear more appealing to funding agencies. The discussion on the ethics of AI is highly complex due to the involvement of many international stakeholders such as the UN, OECD, parliaments, industry groups, professional bodies, and individual companies. The issue of reliability is addressed including the emergence of synthetic life, 5G networks, intermingling of human artificial intelligence, nano-robots and cyber security tools. Features Discusses artificial intelligence and ethics, the challenges and opportunities Presents the issue of reliability in the emergence of synthetic life, 5G networks, intermingling of human artificial intelligence, nano-robots, and cyber security tools Ethical responsibility and reasoning for using AI in Big Data Addresses practicing medicine and ethical issues when applying artificial intelligence
Big Data Analytics in Chemoinformatics and Bioinformatics
Author: Subhash C. Basak
Publisher: Elsevier
ISBN: 0323857140
Category : Science
Languages : en
Pages : 503
Book Description
Big Data Analytics in Chemoinformatics and Bioinformatics: With Applications to Computer-Aided Drug Design, Cancer Biology, Emerging Pathogens and Computational Toxicology provides an up-to-date presentation of big data analytics methods and their applications in diverse fields. The proper management of big data for decision-making in scientific and social issues is of paramount importance. This book gives researchers the tools they need to solve big data problems in these fields. It begins with a section on general topics that all readers will find useful and continues with specific sections covering a range of interdisciplinary applications. Here, an international team of leading experts review their respective fields and present their latest research findings, with case studies used throughout to analyze and present key information. - Brings together the current knowledge on the most important aspects of big data, including analysis using deep learning and fuzzy logic, transparency and data protection, disparate data analytics, and scalability of the big data domain - Covers many applications of big data analysis in diverse fields such as chemistry, chemoinformatics, bioinformatics, computer-assisted drug/vaccine design, characterization of emerging pathogens, and environmental protection - Highlights the considerable benefits offered by big data analytics to science, in biomedical fields and in industry
Publisher: Elsevier
ISBN: 0323857140
Category : Science
Languages : en
Pages : 503
Book Description
Big Data Analytics in Chemoinformatics and Bioinformatics: With Applications to Computer-Aided Drug Design, Cancer Biology, Emerging Pathogens and Computational Toxicology provides an up-to-date presentation of big data analytics methods and their applications in diverse fields. The proper management of big data for decision-making in scientific and social issues is of paramount importance. This book gives researchers the tools they need to solve big data problems in these fields. It begins with a section on general topics that all readers will find useful and continues with specific sections covering a range of interdisciplinary applications. Here, an international team of leading experts review their respective fields and present their latest research findings, with case studies used throughout to analyze and present key information. - Brings together the current knowledge on the most important aspects of big data, including analysis using deep learning and fuzzy logic, transparency and data protection, disparate data analytics, and scalability of the big data domain - Covers many applications of big data analysis in diverse fields such as chemistry, chemoinformatics, bioinformatics, computer-assisted drug/vaccine design, characterization of emerging pathogens, and environmental protection - Highlights the considerable benefits offered by big data analytics to science, in biomedical fields and in industry
Computational Approaches in Cheminformatics and Bioinformatics
Author: Rajarshi Guha
Publisher: John Wiley & Sons
ISBN: 0470384417
Category : Science
Languages : en
Pages : 299
Book Description
A breakthrough guide employing knowledge that unites cheminformatics and bioinformatics as innovation for the future Bridging the gap between cheminformatics and bioinformatics for the first time, Computational Approaches in Cheminformatics and Bioinformatics provides insight on how to blend these two sciences for progressive research benefits. It describes the development and evolution of these fields, how chemical information may be used for biological relations and vice versa, the implications of these new connections, and foreseeable developments in the future. Using algorithms and domains as workflow tools, this revolutionary text drives bioinformaticians to consider chemical structure, and similarly, encourages cheminformaticians to consider large biological systems such as protein targets and networks. Computational Approaches in Cheminformatics and Bioinformatics covers: Data sources available for modelling and prediction purposes Developments of conventional Quantitative Structure-Activity Relationships (QSAR) Computational tools for manipulating chemical and biological data Novel ways of probing the interactions between small molecules and proteins Also including insight from public (NIH), academic, and industrial sources (Novartis, Pfizer), this book offers expert knowledge to aid scientists through industry and academic study. The invaluable applications for drug discovery, cellular and molecular biology, enzymology, and metabolism make Computational Approaches in Cheminformatics and Bioinformatics the essential guidebook for evolving drug discovery research and alleviating the issue of chemical control and manipulation of various systems.
Publisher: John Wiley & Sons
ISBN: 0470384417
Category : Science
Languages : en
Pages : 299
Book Description
A breakthrough guide employing knowledge that unites cheminformatics and bioinformatics as innovation for the future Bridging the gap between cheminformatics and bioinformatics for the first time, Computational Approaches in Cheminformatics and Bioinformatics provides insight on how to blend these two sciences for progressive research benefits. It describes the development and evolution of these fields, how chemical information may be used for biological relations and vice versa, the implications of these new connections, and foreseeable developments in the future. Using algorithms and domains as workflow tools, this revolutionary text drives bioinformaticians to consider chemical structure, and similarly, encourages cheminformaticians to consider large biological systems such as protein targets and networks. Computational Approaches in Cheminformatics and Bioinformatics covers: Data sources available for modelling and prediction purposes Developments of conventional Quantitative Structure-Activity Relationships (QSAR) Computational tools for manipulating chemical and biological data Novel ways of probing the interactions between small molecules and proteins Also including insight from public (NIH), academic, and industrial sources (Novartis, Pfizer), this book offers expert knowledge to aid scientists through industry and academic study. The invaluable applications for drug discovery, cellular and molecular biology, enzymology, and metabolism make Computational Approaches in Cheminformatics and Bioinformatics the essential guidebook for evolving drug discovery research and alleviating the issue of chemical control and manipulation of various systems.
Chemoinformatics
Author: Thomas Engel
Publisher: John Wiley & Sons
ISBN: 3527331093
Category : Science
Languages : en
Pages : 611
Book Description
Von den Grundlagen zu Methoden - dieses Fachbuch, übersichtlich und didaktisch klar gegliedert, ist eine maßgebliche Handreichung mit allem Wissenswerten und Erläuterungen der Tools in diesem Fachgebiet.
Publisher: John Wiley & Sons
ISBN: 3527331093
Category : Science
Languages : en
Pages : 611
Book Description
Von den Grundlagen zu Methoden - dieses Fachbuch, übersichtlich und didaktisch klar gegliedert, ist eine maßgebliche Handreichung mit allem Wissenswerten und Erläuterungen der Tools in diesem Fachgebiet.
Chemoinformatics Approaches to Virtual Screening
Author: Alexandre Varnek
Publisher: Royal Society of Chemistry
ISBN: 0854041443
Category : Computers
Languages : en
Pages : 356
Book Description
Chemoinformatics is broadly a scientific discipline encompassing the design, creation, organization, management, retrieval, analysis, dissemination, visualization and use of chemical information. It is distinct from other computational molecular modeling approaches in that it uses unique representations of chemical structures in the form of multiple chemical descriptors; has its own metrics for defining similarity and diversity of chemical compound libraries; and applies a wide array of statistical, data mining and machine learning techniques to very large collections of chemical compounds in order to establish robust relationships between chemical structure and its physical or biological properties. Chemoinformatics addresses a broad range of problems in chemistry and biology; however, the most commonly known applications of chemoinformatics approaches have been arguably in the area of drug discovery where chemoinformatics tools have played a central role in the analysis and interpretation of structure-property data collected by the means of modern high throughput screening. Early stages in modern drug discovery often involved screening small molecules for their effects on a selected protein target or a model of a biological pathway. In the past fifteen years, innovative technologies that enable rapid synthesis and high throughput screening of large libraries of compounds have been adopted in almost all major pharmaceutical and biotech companies. As a result, there has been a huge increase in the number of compounds available on a routine basis to quickly screen for novel drug candidates against new targets/pathways. In contrast, such technologies have rarely become available to the academic research community, thus limiting its ability to conduct large scale chemical genetics or chemical genomics research. However, the landscape of publicly available experimental data collection methods for chemoinformatics has changed dramatically in very recent years. The term "virtual screening" is commonly associated with methodologies that rely on the explicit knowledge of three-dimensional structure of the target protein to identify potential bioactive compounds. Traditional docking protocols and scoring functions rely on explicitly defined three dimensional coordinates and standard definitions of atom types of both receptors and ligands. Albeit reasonably accurate in many cases, conventional structure based virtual screening approaches are relatively computationally inefficient, which has precluded them from screening really large compound collections. Significant progress has been achieved over many years of research in developing many structure based virtual screening approaches. This book is the first monograph that summarizes innovative applications of efficient chemoinformatics approaches towards the goal of screening large chemical libraries. The focus on virtual screening expands chemoinformatics beyond its traditional boundaries as a synthetic and data-analytical area of research towards its recognition as a predictive and decision support scientific discipline. The approaches discussed by the contributors to the monograph rely on chemoinformatics concepts such as: -representation of molecules using multiple descriptors of chemical structures -advanced chemical similarity calculations in multidimensional descriptor spaces -the use of advanced machine learning and data mining approaches for building quantitative and predictive structure activity models -the use of chemoinformatics methodologies for the analysis of drug-likeness and property prediction -the emerging trend on combining chemoinformatics and bioinformatics concepts in structure based drug discovery The chapters of the book are organized in a logical flow that a typical chemoinformatics project would follow - from structure representation and comparison to data analysis and model building to applications of structure-property relationship models for hit identification and chemical library design. It opens with the overview of modern methods of compounds library design, followed by a chapter devoted to molecular similarity analysis. Four sections describe virtual screening based on the using of molecular fragments, 2D pharmacophores and 3D pharmacophores. Application of fuzzy pharmacophores for libraries design is the subject of the next chapter followed by a chapter dealing with QSAR studies based on local molecular parameters. Probabilistic approaches based on 2D descriptors in assessment of biological activities are also described with an overview of the modern methods and software for ADME prediction. The book ends with a chapter describing the new approach of coding the receptor binding sites and their respective ligands in multidimensional chemical descriptor space that affords an interesting and efficient alternative to traditional docking and screening techniques. Ligand-based approaches, which are in the focus of this work, are more computationally efficient compared to structure-based virtual screening and there are very few books related to modern developments in this field. The focus on extending the experiences accumulated in traditional areas of chemoinformatics research such as Quantitative Structure Activity Relationships (QSAR) or chemical similarity searching towards virtual screening make the theme of this monograph essential reading for researchers in the area of computer-aided drug discovery. However, due to its generic data-analytical focus there will be a growing application of chemoinformatics approaches in multiple areas of chemical and biological research such as synthesis planning, nanotechnology, proteomics, physical and analytical chemistry and chemical genomics.
Publisher: Royal Society of Chemistry
ISBN: 0854041443
Category : Computers
Languages : en
Pages : 356
Book Description
Chemoinformatics is broadly a scientific discipline encompassing the design, creation, organization, management, retrieval, analysis, dissemination, visualization and use of chemical information. It is distinct from other computational molecular modeling approaches in that it uses unique representations of chemical structures in the form of multiple chemical descriptors; has its own metrics for defining similarity and diversity of chemical compound libraries; and applies a wide array of statistical, data mining and machine learning techniques to very large collections of chemical compounds in order to establish robust relationships between chemical structure and its physical or biological properties. Chemoinformatics addresses a broad range of problems in chemistry and biology; however, the most commonly known applications of chemoinformatics approaches have been arguably in the area of drug discovery where chemoinformatics tools have played a central role in the analysis and interpretation of structure-property data collected by the means of modern high throughput screening. Early stages in modern drug discovery often involved screening small molecules for their effects on a selected protein target or a model of a biological pathway. In the past fifteen years, innovative technologies that enable rapid synthesis and high throughput screening of large libraries of compounds have been adopted in almost all major pharmaceutical and biotech companies. As a result, there has been a huge increase in the number of compounds available on a routine basis to quickly screen for novel drug candidates against new targets/pathways. In contrast, such technologies have rarely become available to the academic research community, thus limiting its ability to conduct large scale chemical genetics or chemical genomics research. However, the landscape of publicly available experimental data collection methods for chemoinformatics has changed dramatically in very recent years. The term "virtual screening" is commonly associated with methodologies that rely on the explicit knowledge of three-dimensional structure of the target protein to identify potential bioactive compounds. Traditional docking protocols and scoring functions rely on explicitly defined three dimensional coordinates and standard definitions of atom types of both receptors and ligands. Albeit reasonably accurate in many cases, conventional structure based virtual screening approaches are relatively computationally inefficient, which has precluded them from screening really large compound collections. Significant progress has been achieved over many years of research in developing many structure based virtual screening approaches. This book is the first monograph that summarizes innovative applications of efficient chemoinformatics approaches towards the goal of screening large chemical libraries. The focus on virtual screening expands chemoinformatics beyond its traditional boundaries as a synthetic and data-analytical area of research towards its recognition as a predictive and decision support scientific discipline. The approaches discussed by the contributors to the monograph rely on chemoinformatics concepts such as: -representation of molecules using multiple descriptors of chemical structures -advanced chemical similarity calculations in multidimensional descriptor spaces -the use of advanced machine learning and data mining approaches for building quantitative and predictive structure activity models -the use of chemoinformatics methodologies for the analysis of drug-likeness and property prediction -the emerging trend on combining chemoinformatics and bioinformatics concepts in structure based drug discovery The chapters of the book are organized in a logical flow that a typical chemoinformatics project would follow - from structure representation and comparison to data analysis and model building to applications of structure-property relationship models for hit identification and chemical library design. It opens with the overview of modern methods of compounds library design, followed by a chapter devoted to molecular similarity analysis. Four sections describe virtual screening based on the using of molecular fragments, 2D pharmacophores and 3D pharmacophores. Application of fuzzy pharmacophores for libraries design is the subject of the next chapter followed by a chapter dealing with QSAR studies based on local molecular parameters. Probabilistic approaches based on 2D descriptors in assessment of biological activities are also described with an overview of the modern methods and software for ADME prediction. The book ends with a chapter describing the new approach of coding the receptor binding sites and their respective ligands in multidimensional chemical descriptor space that affords an interesting and efficient alternative to traditional docking and screening techniques. Ligand-based approaches, which are in the focus of this work, are more computationally efficient compared to structure-based virtual screening and there are very few books related to modern developments in this field. The focus on extending the experiences accumulated in traditional areas of chemoinformatics research such as Quantitative Structure Activity Relationships (QSAR) or chemical similarity searching towards virtual screening make the theme of this monograph essential reading for researchers in the area of computer-aided drug discovery. However, due to its generic data-analytical focus there will be a growing application of chemoinformatics approaches in multiple areas of chemical and biological research such as synthesis planning, nanotechnology, proteomics, physical and analytical chemistry and chemical genomics.
Artificial Intelligence in Drug Discovery
Author: Nathan Brown
Publisher: Royal Society of Chemistry
ISBN: 1839160543
Category : Computers
Languages : en
Pages : 425
Book Description
Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia.
Publisher: Royal Society of Chemistry
ISBN: 1839160543
Category : Computers
Languages : en
Pages : 425
Book Description
Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia.
Future of AI in Biomedicine and Biotechnology
Author: Khade, Shankar Mukundrao
Publisher: IGI Global
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
The healthcare industry is grappling with numerous challenges, including rising costs, inefficiencies in service delivery, and the need for personalized treatment approaches. Traditional healthcare management and delivery methods must be improved in addressing these issues, leading to a growing demand for innovative solutions. Additionally, the exponential growth of medical data and the complexity of biomedical research and biotechnology presents a daunting challenge in harnessing this data effectively for improved patient care and medical advancements. There is a pressing need for a comprehensive understanding of how artificial intelligence (AI) can be leveraged to tackle these challenges and drive meaningful change in the healthcare sector. Future of AI in Biomedicine and Biotechnology offers a timely and insightful solution to the challenges faced by the healthcare industry. This book is not just a theoretical exploration; it is a practical roadmap for healthcare professionals, researchers, policymakers, and entrepreneurs seeking to navigate the complexities of AI in healthcare. By exploring the intersection of AI with biomedical sciences and biotechnology, this book provides a comprehensive guide to harnessing the power of AI for transformative healthcare innovation.
Publisher: IGI Global
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
The healthcare industry is grappling with numerous challenges, including rising costs, inefficiencies in service delivery, and the need for personalized treatment approaches. Traditional healthcare management and delivery methods must be improved in addressing these issues, leading to a growing demand for innovative solutions. Additionally, the exponential growth of medical data and the complexity of biomedical research and biotechnology presents a daunting challenge in harnessing this data effectively for improved patient care and medical advancements. There is a pressing need for a comprehensive understanding of how artificial intelligence (AI) can be leveraged to tackle these challenges and drive meaningful change in the healthcare sector. Future of AI in Biomedicine and Biotechnology offers a timely and insightful solution to the challenges faced by the healthcare industry. This book is not just a theoretical exploration; it is a practical roadmap for healthcare professionals, researchers, policymakers, and entrepreneurs seeking to navigate the complexities of AI in healthcare. By exploring the intersection of AI with biomedical sciences and biotechnology, this book provides a comprehensive guide to harnessing the power of AI for transformative healthcare innovation.
Artificial Intelligence and Machine Learning in Drug Design and Development
Author: Abhirup Khanna
Publisher: John Wiley & Sons
ISBN: 1394234163
Category : Computers
Languages : en
Pages : 677
Book Description
The book is a comprehensive guide that explores the use of artificial intelligence and machine learning in drug discovery and development covering a range of topics, including the use of molecular modeling, docking, identifying targets, selecting compounds, and optimizing drugs. The intersection of Artificial Intelligence (AI) and Machine Learning (ML) within the field of drug design and development represents a pivotal moment in the history of healthcare and pharmaceuticals. The remarkable synergy between cutting-edge technology and the life sciences has ushered in a new era of possibilities, offering unprecedented opportunities, formidable challenges, and a tantalizing glimpse into the future of medicine. AI can be applied to all the key areas of the pharmaceutical industry, such as drug discovery and development, drug repurposing, and improving productivity within a short period. Contemporary methods have shown promising results in facilitating the discovery of drugs to target different diseases. Moreover, AI helps in predicting the efficacy and safety of molecules and gives researchers a much broader chemical pallet for the selection of the best molecules for drug testing and delivery. In this context, drug repurposing is another important topic where AI can have a substantial impact. With the vast amount of clinical and pharmaceutical data available to date, AI algorithms find suitable drugs that can be repurposed for alternative use in medicine. This book is a comprehensive exploration of this dynamic and rapidly evolving field. In an era where precision and efficiency are paramount in drug discovery, AI and ML have emerged as transformative tools, reshaping the way we identify, design, and develop pharmaceuticals. This book is a testament to the profound impact these technologies have had and will continue to have on the pharmaceutical industry, healthcare, and ultimately, patient well-being. The editors of this volume have assembled a distinguished group of experts, researchers, and thought leaders from both the AI, ML, and pharmaceutical domains. Their collective knowledge and insights illuminate the multifaceted landscape of AI and ML in drug design and development, offering a roadmap for navigating its complexities and harnessing its potential. In each section, readers will find a rich tapestry of knowledge, case studies, and expert opinions, providing a 360-degree view of AI and ML’s role in drug design and development. Whether you are a researcher, scientist, industry professional, policymaker, or simply curious about the future of medicine, this book offers 19 state-of-the-art chapters providing valuable insights and a compass to navigate the exciting journey ahead. Audience The book is a valuable resource for a wide range of professionals in the pharmaceutical and allied industries including researchers, scientists, engineers, and laboratory workers in the field of drug discovery and development, who want to learn about the latest techniques in machine learning and AI, as well as information technology professionals who are interested in the application of machine learning and artificial intelligence in drug development.
Publisher: John Wiley & Sons
ISBN: 1394234163
Category : Computers
Languages : en
Pages : 677
Book Description
The book is a comprehensive guide that explores the use of artificial intelligence and machine learning in drug discovery and development covering a range of topics, including the use of molecular modeling, docking, identifying targets, selecting compounds, and optimizing drugs. The intersection of Artificial Intelligence (AI) and Machine Learning (ML) within the field of drug design and development represents a pivotal moment in the history of healthcare and pharmaceuticals. The remarkable synergy between cutting-edge technology and the life sciences has ushered in a new era of possibilities, offering unprecedented opportunities, formidable challenges, and a tantalizing glimpse into the future of medicine. AI can be applied to all the key areas of the pharmaceutical industry, such as drug discovery and development, drug repurposing, and improving productivity within a short period. Contemporary methods have shown promising results in facilitating the discovery of drugs to target different diseases. Moreover, AI helps in predicting the efficacy and safety of molecules and gives researchers a much broader chemical pallet for the selection of the best molecules for drug testing and delivery. In this context, drug repurposing is another important topic where AI can have a substantial impact. With the vast amount of clinical and pharmaceutical data available to date, AI algorithms find suitable drugs that can be repurposed for alternative use in medicine. This book is a comprehensive exploration of this dynamic and rapidly evolving field. In an era where precision and efficiency are paramount in drug discovery, AI and ML have emerged as transformative tools, reshaping the way we identify, design, and develop pharmaceuticals. This book is a testament to the profound impact these technologies have had and will continue to have on the pharmaceutical industry, healthcare, and ultimately, patient well-being. The editors of this volume have assembled a distinguished group of experts, researchers, and thought leaders from both the AI, ML, and pharmaceutical domains. Their collective knowledge and insights illuminate the multifaceted landscape of AI and ML in drug design and development, offering a roadmap for navigating its complexities and harnessing its potential. In each section, readers will find a rich tapestry of knowledge, case studies, and expert opinions, providing a 360-degree view of AI and ML’s role in drug design and development. Whether you are a researcher, scientist, industry professional, policymaker, or simply curious about the future of medicine, this book offers 19 state-of-the-art chapters providing valuable insights and a compass to navigate the exciting journey ahead. Audience The book is a valuable resource for a wide range of professionals in the pharmaceutical and allied industries including researchers, scientists, engineers, and laboratory workers in the field of drug discovery and development, who want to learn about the latest techniques in machine learning and AI, as well as information technology professionals who are interested in the application of machine learning and artificial intelligence in drug development.