Author: Mohsen Asadnia
Publisher: Academic Press
ISBN: 0323905072
Category : Computers
Languages : en
Pages : 326
Book Description
Artificial Intelligence and Data Science in Environmental Sensing provides state-of-the-art information on the inexpensive mass-produced sensors that are used as inputs to artificial intelligence systems. The book discusses the advances of AI and Machine Learning technologies in material design for environmental areas. It is an excellent resource for researchers and professionals who work in the field of data processing, artificial intelligence sensors and environmental applications. - Presents tools, connections and proactive solutions to take sustainability programs to the next level - Offers a practical guide for making students proficient in modern electronic data analysis and graphics - Provides knowledge and background to develop specific platforms related to environmental sensing, including control water, air and soil quality, water and wastewater treatment, desalination, pollution mitigation/control, and resource management and recovery
Artificial Intelligence and Data Science in Environmental Sensing
Author: Mohsen Asadnia
Publisher: Academic Press
ISBN: 0323905072
Category : Computers
Languages : en
Pages : 326
Book Description
Artificial Intelligence and Data Science in Environmental Sensing provides state-of-the-art information on the inexpensive mass-produced sensors that are used as inputs to artificial intelligence systems. The book discusses the advances of AI and Machine Learning technologies in material design for environmental areas. It is an excellent resource for researchers and professionals who work in the field of data processing, artificial intelligence sensors and environmental applications. - Presents tools, connections and proactive solutions to take sustainability programs to the next level - Offers a practical guide for making students proficient in modern electronic data analysis and graphics - Provides knowledge and background to develop specific platforms related to environmental sensing, including control water, air and soil quality, water and wastewater treatment, desalination, pollution mitigation/control, and resource management and recovery
Publisher: Academic Press
ISBN: 0323905072
Category : Computers
Languages : en
Pages : 326
Book Description
Artificial Intelligence and Data Science in Environmental Sensing provides state-of-the-art information on the inexpensive mass-produced sensors that are used as inputs to artificial intelligence systems. The book discusses the advances of AI and Machine Learning technologies in material design for environmental areas. It is an excellent resource for researchers and professionals who work in the field of data processing, artificial intelligence sensors and environmental applications. - Presents tools, connections and proactive solutions to take sustainability programs to the next level - Offers a practical guide for making students proficient in modern electronic data analysis and graphics - Provides knowledge and background to develop specific platforms related to environmental sensing, including control water, air and soil quality, water and wastewater treatment, desalination, pollution mitigation/control, and resource management and recovery
Data Science Applied to Sustainability Analysis
Author: Jennifer Dunn
Publisher: Elsevier
ISBN: 0128179775
Category : Science
Languages : en
Pages : 312
Book Description
Data Science Applied to Sustainability Analysis focuses on the methodological considerations associated with applying this tool in analysis techniques such as lifecycle assessment and materials flow analysis. As sustainability analysts need examples of applications of big data techniques that are defensible and practical in sustainability analyses and that yield actionable results that can inform policy development, corporate supply chain management strategy, or non-governmental organization positions, this book helps answer underlying questions. In addition, it addresses the need of data science experts looking for routes to apply their skills and knowledge to domain areas. - Presents data sources that are available for application in sustainability analyses, such as market information, environmental monitoring data, social media data and satellite imagery - Includes considerations sustainability analysts must evaluate when applying big data - Features case studies illustrating the application of data science in sustainability analyses
Publisher: Elsevier
ISBN: 0128179775
Category : Science
Languages : en
Pages : 312
Book Description
Data Science Applied to Sustainability Analysis focuses on the methodological considerations associated with applying this tool in analysis techniques such as lifecycle assessment and materials flow analysis. As sustainability analysts need examples of applications of big data techniques that are defensible and practical in sustainability analyses and that yield actionable results that can inform policy development, corporate supply chain management strategy, or non-governmental organization positions, this book helps answer underlying questions. In addition, it addresses the need of data science experts looking for routes to apply their skills and knowledge to domain areas. - Presents data sources that are available for application in sustainability analyses, such as market information, environmental monitoring data, social media data and satellite imagery - Includes considerations sustainability analysts must evaluate when applying big data - Features case studies illustrating the application of data science in sustainability analyses
Artificial Intelligence Methods in the Environmental Sciences
Author: Sue Ellen Haupt
Publisher: Springer Science & Business Media
ISBN: 1402091192
Category : Science
Languages : en
Pages : 418
Book Description
How can environmental scientists and engineers use the increasing amount of available data to enhance our understanding of planet Earth, its systems and processes? This book describes various potential approaches based on artificial intelligence (AI) techniques, including neural networks, decision trees, genetic algorithms and fuzzy logic. Part I contains a series of tutorials describing the methods and the important considerations in applying them. In Part II, many practical examples illustrate the power of these techniques on actual environmental problems. International experts bring to life ways to apply AI to problems in the environmental sciences. While one culture entwines ideas with a thread, another links them with a red line. Thus, a “red thread“ ties the book together, weaving a tapestry that pictures the ‘natural’ data-driven AI methods in the light of the more traditional modeling techniques, and demonstrating the power of these data-based methods.
Publisher: Springer Science & Business Media
ISBN: 1402091192
Category : Science
Languages : en
Pages : 418
Book Description
How can environmental scientists and engineers use the increasing amount of available data to enhance our understanding of planet Earth, its systems and processes? This book describes various potential approaches based on artificial intelligence (AI) techniques, including neural networks, decision trees, genetic algorithms and fuzzy logic. Part I contains a series of tutorials describing the methods and the important considerations in applying them. In Part II, many practical examples illustrate the power of these techniques on actual environmental problems. International experts bring to life ways to apply AI to problems in the environmental sciences. While one culture entwines ideas with a thread, another links them with a red line. Thus, a “red thread“ ties the book together, weaving a tapestry that pictures the ‘natural’ data-driven AI methods in the light of the more traditional modeling techniques, and demonstrating the power of these data-based methods.
Machine Learning Methods in the Environmental Sciences
Author: William W. Hsieh
Publisher: Cambridge University Press
ISBN: 0521791928
Category : Computers
Languages : en
Pages : 364
Book Description
A graduate textbook that provides a unified treatment of machine learning methods and their applications in the environmental sciences.
Publisher: Cambridge University Press
ISBN: 0521791928
Category : Computers
Languages : en
Pages : 364
Book Description
A graduate textbook that provides a unified treatment of machine learning methods and their applications in the environmental sciences.
Encyclopedia of Data Science and Machine Learning
Author: Wang, John
Publisher: IGI Global
ISBN: 1799892212
Category : Computers
Languages : en
Pages : 3296
Book Description
Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.
Publisher: IGI Global
ISBN: 1799892212
Category : Computers
Languages : en
Pages : 3296
Book Description
Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.
Machine Learning and Data Science in the Oil and Gas Industry
Author: Patrick Bangert
Publisher: Gulf Professional Publishing
ISBN: 0128209143
Category : Science
Languages : en
Pages : 290
Book Description
Machine Learning and Data Science in the Oil and Gas Industry explains how machine learning can be specifically tailored to oil and gas use cases. Petroleum engineers will learn when to use machine learning, how it is already used in oil and gas operations, and how to manage the data stream moving forward. Practical in its approach, the book explains all aspects of a data science or machine learning project, including the managerial parts of it that are so often the cause for failure. Several real-life case studies round out the book with topics such as predictive maintenance, soft sensing, and forecasting. Viewed as a guide book, this manual will lead a practitioner through the journey of a data science project in the oil and gas industry circumventing the pitfalls and articulating the business value. - Chart an overview of the techniques and tools of machine learning including all the non-technological aspects necessary to be successful - Gain practical understanding of machine learning used in oil and gas operations through contributed case studies - Learn change management skills that will help gain confidence in pursuing the technology - Understand the workflow of a full-scale project and where machine learning benefits (and where it does not)
Publisher: Gulf Professional Publishing
ISBN: 0128209143
Category : Science
Languages : en
Pages : 290
Book Description
Machine Learning and Data Science in the Oil and Gas Industry explains how machine learning can be specifically tailored to oil and gas use cases. Petroleum engineers will learn when to use machine learning, how it is already used in oil and gas operations, and how to manage the data stream moving forward. Practical in its approach, the book explains all aspects of a data science or machine learning project, including the managerial parts of it that are so often the cause for failure. Several real-life case studies round out the book with topics such as predictive maintenance, soft sensing, and forecasting. Viewed as a guide book, this manual will lead a practitioner through the journey of a data science project in the oil and gas industry circumventing the pitfalls and articulating the business value. - Chart an overview of the techniques and tools of machine learning including all the non-technological aspects necessary to be successful - Gain practical understanding of machine learning used in oil and gas operations through contributed case studies - Learn change management skills that will help gain confidence in pursuing the technology - Understand the workflow of a full-scale project and where machine learning benefits (and where it does not)
AI 2022: Advances in Artificial Intelligence
Author: Haris Aziz
Publisher: Springer Nature
ISBN: 303122695X
Category : Computers
Languages : en
Pages : 825
Book Description
This book constitutes the refereed proceedings of the 35th Australasian Joint Conference on Artificial Intelligence, AI 2022, which took place in Perth, WA, Australia, in December 5–8, 2022. The 56 full papers included in this book were carefully reviewed and selected from 90 submissions. They were organized in topical sections as follows: Computer Vision; Deep Learning; Ethical/Explainable AI; Genetic Algorithms; Knowledge Representation and NLP; Machine Learning; Medical AI; Optimization; and Reinforcement Learning.
Publisher: Springer Nature
ISBN: 303122695X
Category : Computers
Languages : en
Pages : 825
Book Description
This book constitutes the refereed proceedings of the 35th Australasian Joint Conference on Artificial Intelligence, AI 2022, which took place in Perth, WA, Australia, in December 5–8, 2022. The 56 full papers included in this book were carefully reviewed and selected from 90 submissions. They were organized in topical sections as follows: Computer Vision; Deep Learning; Ethical/Explainable AI; Genetic Algorithms; Knowledge Representation and NLP; Machine Learning; Medical AI; Optimization; and Reinforcement Learning.
Intelligent Data Engineering and Automated Learning – IDEAL 2023
Author: Paulo Quaresma
Publisher: Springer Nature
ISBN: 3031482328
Category : Computers
Languages : en
Pages : 561
Book Description
This book constitutes the proceedings of the 24th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2023, held in Évora, Portugal, during November 22–24, 2023. The 45 full papers and 4 short papers presented in this book were carefully reviewed and selected from 77 submissions. IDEAL 2023 is focusing on big data challenges, machine learning, deep learning, data mining, information retrieval and management, bio-/neuro-informatics, bio-inspired models, agents and hybrid intelligent systems, and real-world applications of intelligence techniques and AI. The papers are organized in the following topical sections: main track; special session on federated learning and (pre) aggregation in machine learning; special session on intelligent techniques for real-world applications of renewable energy and green transport; and special session on data selection in machine learning.
Publisher: Springer Nature
ISBN: 3031482328
Category : Computers
Languages : en
Pages : 561
Book Description
This book constitutes the proceedings of the 24th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2023, held in Évora, Portugal, during November 22–24, 2023. The 45 full papers and 4 short papers presented in this book were carefully reviewed and selected from 77 submissions. IDEAL 2023 is focusing on big data challenges, machine learning, deep learning, data mining, information retrieval and management, bio-/neuro-informatics, bio-inspired models, agents and hybrid intelligent systems, and real-world applications of intelligence techniques and AI. The papers are organized in the following topical sections: main track; special session on federated learning and (pre) aggregation in machine learning; special session on intelligent techniques for real-world applications of renewable energy and green transport; and special session on data selection in machine learning.
Structural Health Monitoring Based on Data Science Techniques
Author: Alexandre Cury
Publisher: Springer Nature
ISBN: 3030817164
Category : Computers
Languages : en
Pages : 490
Book Description
The modern structural health monitoring (SHM) paradigm of transforming in situ, real-time data acquisition into actionable decisions regarding structural performance, health state, maintenance, or life cycle assessment has been accelerated by the rapid growth of “big data” availability and advanced data science. Such data availability coupled with a wide variety of machine learning and data analytics techniques have led to rapid advancement of how SHM is executed, enabling increased transformation from research to practice. This book intends to present a representative collection of such data science advancements used for SHM applications, providing an important contribution for civil engineers, researchers, and practitioners around the world.
Publisher: Springer Nature
ISBN: 3030817164
Category : Computers
Languages : en
Pages : 490
Book Description
The modern structural health monitoring (SHM) paradigm of transforming in situ, real-time data acquisition into actionable decisions regarding structural performance, health state, maintenance, or life cycle assessment has been accelerated by the rapid growth of “big data” availability and advanced data science. Such data availability coupled with a wide variety of machine learning and data analytics techniques have led to rapid advancement of how SHM is executed, enabling increased transformation from research to practice. This book intends to present a representative collection of such data science advancements used for SHM applications, providing an important contribution for civil engineers, researchers, and practitioners around the world.
Artificial Intelligence and Industry in Society 5.0
Author: Nitin Liladhar Rane
Publisher: Deep Science Publishing
ISBN: 8198127119
Category : Computers
Languages : en
Pages : 123
Book Description
The past few years have seen artificial intelligence (AI) acting as a force that has been changing industries, societies and also the educational landscape. The objective of this book is to present a holistic view of the different sectors being affected by AI and to list some of the challenges or opportunities that have arisen as part of this fast-moving area. The opening chapter is on the ethically fraught domain of AI technologies such as ChatGPT in educational contexts, noting new frontiers for cheating and suggesting ways that its integrity can be protected during this next industrial push of technological change. Even as AI tools grow in common use, educational institutions must grapple with these complexities to maintain notions of fair play and knowledge building. Further chapters move beyond AI in education to how it can be used as a broad lever for smart and sustainable campuses, cities, and infrastructure. The text in Chapter two centers on the way artificial intelligence (machine learning and deep learning) can steer more insightful urban planning, resource management and development that is sustainable. Chapter three presents a wider coverage of AI applications, including the concept of digital twins in different sectors-healthcare, finance and agriculture-as examples on how digital replicas improve productivity and innovation across various industries under Industry 4.0; 5.0 and Society 5.0. Chater four and five moves to the regulatory issues regarding AI. They talk about the importance of strong policies and the technological, economic, and regulatory obstacles holding back AI from realizing its promise in helping industries become smarter and more sustainable. The book also wraps up with a reflective commentary which presents the real-world applications of AI, future directions and potential research topics in AI, thereby providing readers some suggestions about where we could go regarding the development of AI in the next few years. This is the series of chapters that will show you how transformational AI can be; we hope it awakens the imagination and motivates people to conduct research and innovation in this exciting sector.
Publisher: Deep Science Publishing
ISBN: 8198127119
Category : Computers
Languages : en
Pages : 123
Book Description
The past few years have seen artificial intelligence (AI) acting as a force that has been changing industries, societies and also the educational landscape. The objective of this book is to present a holistic view of the different sectors being affected by AI and to list some of the challenges or opportunities that have arisen as part of this fast-moving area. The opening chapter is on the ethically fraught domain of AI technologies such as ChatGPT in educational contexts, noting new frontiers for cheating and suggesting ways that its integrity can be protected during this next industrial push of technological change. Even as AI tools grow in common use, educational institutions must grapple with these complexities to maintain notions of fair play and knowledge building. Further chapters move beyond AI in education to how it can be used as a broad lever for smart and sustainable campuses, cities, and infrastructure. The text in Chapter two centers on the way artificial intelligence (machine learning and deep learning) can steer more insightful urban planning, resource management and development that is sustainable. Chapter three presents a wider coverage of AI applications, including the concept of digital twins in different sectors-healthcare, finance and agriculture-as examples on how digital replicas improve productivity and innovation across various industries under Industry 4.0; 5.0 and Society 5.0. Chater four and five moves to the regulatory issues regarding AI. They talk about the importance of strong policies and the technological, economic, and regulatory obstacles holding back AI from realizing its promise in helping industries become smarter and more sustainable. The book also wraps up with a reflective commentary which presents the real-world applications of AI, future directions and potential research topics in AI, thereby providing readers some suggestions about where we could go regarding the development of AI in the next few years. This is the series of chapters that will show you how transformational AI can be; we hope it awakens the imagination and motivates people to conduct research and innovation in this exciting sector.