Author: Jonathon Grooms
Publisher: NSTA Press
ISBN: 1681403722
Category : Science
Languages : en
Pages : 466
Book Description
Are you interested in using argument-driven inquiry for middle school lab instruction but just aren’t sure how to do it? Argument-Driven Inquiry in Physical Science will provide you with both the information and instructional materials you need to start using this method right away. The book is a one-stop source of expertise, advice, and investigations to help physical science students work the way scientists do. The book is divided into two basic parts: 1. An introduction to the stages of argument-driven inquiry—from question identification, data analysis, and argument development and evaluation to double-blind peer review and report revision. 2. A well-organized series of 22 field-tested labs designed to be much more authentic for instruction than traditional laboratory activities. The labs cover four core ideas in physical science: matter, motion and forces, energy, and waves. Students dig into important content and learn scientific practices as they figure out everything from how thermal energy works to what could make an action figure jump higher. The authors are veteran teachers who know your time constraints, so they designed the book with easy-to-use reproducible student pages, teacher notes, and checkout questions. The labs also support today’s standards and will help your students learn the core ideas, crosscutting concepts, and scientific practices found in the Next Generation Science Standards. In addition, the authors offer ways for students to develop the disciplinary skills outlined in the Common Core State Standards. Many of today’s middle school teachers—like you—want to find new ways to engage students in scientific practices and help students learn more from lab activities. Argument-Driven Inquiry in Physical Science does all of this while also giving students the chance to practice reading, writing, speaking, and using math in the context of science.
Argument-Driven Inquiry in Physical Science
Author: Jonathon Grooms
Publisher: NSTA Press
ISBN: 1681403722
Category : Science
Languages : en
Pages : 466
Book Description
Are you interested in using argument-driven inquiry for middle school lab instruction but just aren’t sure how to do it? Argument-Driven Inquiry in Physical Science will provide you with both the information and instructional materials you need to start using this method right away. The book is a one-stop source of expertise, advice, and investigations to help physical science students work the way scientists do. The book is divided into two basic parts: 1. An introduction to the stages of argument-driven inquiry—from question identification, data analysis, and argument development and evaluation to double-blind peer review and report revision. 2. A well-organized series of 22 field-tested labs designed to be much more authentic for instruction than traditional laboratory activities. The labs cover four core ideas in physical science: matter, motion and forces, energy, and waves. Students dig into important content and learn scientific practices as they figure out everything from how thermal energy works to what could make an action figure jump higher. The authors are veteran teachers who know your time constraints, so they designed the book with easy-to-use reproducible student pages, teacher notes, and checkout questions. The labs also support today’s standards and will help your students learn the core ideas, crosscutting concepts, and scientific practices found in the Next Generation Science Standards. In addition, the authors offer ways for students to develop the disciplinary skills outlined in the Common Core State Standards. Many of today’s middle school teachers—like you—want to find new ways to engage students in scientific practices and help students learn more from lab activities. Argument-Driven Inquiry in Physical Science does all of this while also giving students the chance to practice reading, writing, speaking, and using math in the context of science.
Publisher: NSTA Press
ISBN: 1681403722
Category : Science
Languages : en
Pages : 466
Book Description
Are you interested in using argument-driven inquiry for middle school lab instruction but just aren’t sure how to do it? Argument-Driven Inquiry in Physical Science will provide you with both the information and instructional materials you need to start using this method right away. The book is a one-stop source of expertise, advice, and investigations to help physical science students work the way scientists do. The book is divided into two basic parts: 1. An introduction to the stages of argument-driven inquiry—from question identification, data analysis, and argument development and evaluation to double-blind peer review and report revision. 2. A well-organized series of 22 field-tested labs designed to be much more authentic for instruction than traditional laboratory activities. The labs cover four core ideas in physical science: matter, motion and forces, energy, and waves. Students dig into important content and learn scientific practices as they figure out everything from how thermal energy works to what could make an action figure jump higher. The authors are veteran teachers who know your time constraints, so they designed the book with easy-to-use reproducible student pages, teacher notes, and checkout questions. The labs also support today’s standards and will help your students learn the core ideas, crosscutting concepts, and scientific practices found in the Next Generation Science Standards. In addition, the authors offer ways for students to develop the disciplinary skills outlined in the Common Core State Standards. Many of today’s middle school teachers—like you—want to find new ways to engage students in scientific practices and help students learn more from lab activities. Argument-Driven Inquiry in Physical Science does all of this while also giving students the chance to practice reading, writing, speaking, and using math in the context of science.
Argument-driven Inquiry in Physics
Author: Todd Hutner
Publisher:
ISBN: 9781681403786
Category : Electricity
Languages : en
Pages :
Book Description
"This book is divided into 5 sections. Section 1 includes two chapters: the first chapter describes the ADI instructional model, and the second chapter describes the development of the ADI lab investigations and provides an overview of what is included with each investigation. Sections 2-4 contain the 17 lab investigations. Each investigation includes three components: Teacher Notes, a Lab Handout, and Checkout Questions. Section 5 consists of five appendixes that include standards alignment matrixes, an overview of the CCs and the NOSK and NOSI concepts that are a focus of the lab investigations, options (in tabular format) for implementing an ADI investigation over multiple 50-minute class periods, options for investigation proposals, which students can use as graphic organizers to plan an investigation, and two versions of a peer-review guide and teacher scoring rubric (one for high school and one for AP)"--
Publisher:
ISBN: 9781681403786
Category : Electricity
Languages : en
Pages :
Book Description
"This book is divided into 5 sections. Section 1 includes two chapters: the first chapter describes the ADI instructional model, and the second chapter describes the development of the ADI lab investigations and provides an overview of what is included with each investigation. Sections 2-4 contain the 17 lab investigations. Each investigation includes three components: Teacher Notes, a Lab Handout, and Checkout Questions. Section 5 consists of five appendixes that include standards alignment matrixes, an overview of the CCs and the NOSK and NOSI concepts that are a focus of the lab investigations, options (in tabular format) for implementing an ADI investigation over multiple 50-minute class periods, options for investigation proposals, which students can use as graphic organizers to plan an investigation, and two versions of a peer-review guide and teacher scoring rubric (one for high school and one for AP)"--
Argument-Driven Inquiry in Life Science
Author: Patrick Enderle
Publisher:
ISBN: 9781938946240
Category : Biology
Languages : en
Pages : 386
Book Description
Publisher:
ISBN: 9781938946240
Category : Biology
Languages : en
Pages : 386
Book Description
Scientific Argumentation in Biology
Author: Victor Sampson
Publisher: NSTA Press
ISBN: 1936137275
Category : Computers
Languages : en
Pages : 426
Book Description
Develop your high school students' understanding of argumentation and evidence-based reasoning with this comprehensive book. Like three guides in one 'Scientific Argumentation in Biology' combines theory, practice, and biology content.
Publisher: NSTA Press
ISBN: 1936137275
Category : Computers
Languages : en
Pages : 426
Book Description
Develop your high school students' understanding of argumentation and evidence-based reasoning with this comprehensive book. Like three guides in one 'Scientific Argumentation in Biology' combines theory, practice, and biology content.
A Framework for K-12 Science Education
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309214459
Category : Education
Languages : en
Pages : 400
Book Description
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
Publisher: National Academies Press
ISBN: 0309214459
Category : Education
Languages : en
Pages : 400
Book Description
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
Student Lab Manual for Argument-Driven Inquiry in Physical Science
Author: Jonathon Grooms
Publisher: NSTA Press
ISBN: 168140527X
Category : Science
Languages : en
Pages : 235
Book Description
Are you interested in using argument-driven inquiry for middle school lab instruction but just aren’t sure how to do it? Argument-Driven Inquiry in Physical Science will provide you with both the information and instructional materials you need to start using this method right away. The book is a one-stop source of expertise, advice, and investigations to help physical science students work the way scientists do. Student Lab Manual for Argument-Driven Inquiry in Life Science provides the student materials you need to guide your students through these investigations. With lab details, student handouts, and safety information, your students will be ready to start investigating.
Publisher: NSTA Press
ISBN: 168140527X
Category : Science
Languages : en
Pages : 235
Book Description
Are you interested in using argument-driven inquiry for middle school lab instruction but just aren’t sure how to do it? Argument-Driven Inquiry in Physical Science will provide you with both the information and instructional materials you need to start using this method right away. The book is a one-stop source of expertise, advice, and investigations to help physical science students work the way scientists do. Student Lab Manual for Argument-Driven Inquiry in Life Science provides the student materials you need to guide your students through these investigations. With lab details, student handouts, and safety information, your students will be ready to start investigating.
Argument-driven Inquiry in Third-grade Science
Author: Victor Sampson
Publisher:
ISBN: 9781681405179
Category : Education
Languages : en
Pages : 0
Book Description
The instructional model: argument-driven inquiry -- Motion and stability: forces and interactions -- From molecules to organisms: structures and process -- Heredity: inheritance and variation of traits -- Biological evolution: unity and diversity -- Earth's systems.
Publisher:
ISBN: 9781681405179
Category : Education
Languages : en
Pages : 0
Book Description
The instructional model: argument-driven inquiry -- Motion and stability: forces and interactions -- From molecules to organisms: structures and process -- Heredity: inheritance and variation of traits -- Biological evolution: unity and diversity -- Earth's systems.
Argument-driven Inquiry in Biology
Author: Victor Sampson
Publisher: NSTA Press
ISBN: 1938946200
Category : Education
Languages : en
Pages : 442
Book Description
Are you interested in using argument-driven inquiry for high school lab instruction but just aren't sure how to do it? You aren't alone. This book will provide you with both the information and instructional materials you need to start using this method right away. Argument-Driven Inquiry in Biology is a one-stop source of expertise, advice, and investigations. The book is broken into two basic parts: 1. An introduction to the stages of argument-driven inquiry-- from question identification, data analysis, and argument development and evaluation to double-blind peer review and report revision. 2. A well-organized series of 27 field-tested labs that cover molecules and organisms, ecosystems, heredity, and biological evolution. The investigations are designed to be more authentic scientific experiences than traditional laboratory activities. They give your students an opportunity to design their own methods, develop models, collect and analyze data, generate arguments, and critique claims and evidence. Because the authors are veteran teachers, they designed Argument-Driven Inquiry in Biology to be easy to use and aligned with today's standards. The labs include reproducible student pages and teacher notes. The investigations will help your students learn the core ideas, crosscutting concepts, and scientific practices found in the Next Generation Science Standards. In addition, they offer ways for students to develop the disciplinary skills outlined in the Common Core State Standards. Many of today's teachers-- like you-- want to find new ways to engage students in scientific practices and help students learn more from lab activities. Argument-Driven Inquiry in Biology does all of this even as it gives students the chance to practice reading, writing, speaking, and using math in the context of science.
Publisher: NSTA Press
ISBN: 1938946200
Category : Education
Languages : en
Pages : 442
Book Description
Are you interested in using argument-driven inquiry for high school lab instruction but just aren't sure how to do it? You aren't alone. This book will provide you with both the information and instructional materials you need to start using this method right away. Argument-Driven Inquiry in Biology is a one-stop source of expertise, advice, and investigations. The book is broken into two basic parts: 1. An introduction to the stages of argument-driven inquiry-- from question identification, data analysis, and argument development and evaluation to double-blind peer review and report revision. 2. A well-organized series of 27 field-tested labs that cover molecules and organisms, ecosystems, heredity, and biological evolution. The investigations are designed to be more authentic scientific experiences than traditional laboratory activities. They give your students an opportunity to design their own methods, develop models, collect and analyze data, generate arguments, and critique claims and evidence. Because the authors are veteran teachers, they designed Argument-Driven Inquiry in Biology to be easy to use and aligned with today's standards. The labs include reproducible student pages and teacher notes. The investigations will help your students learn the core ideas, crosscutting concepts, and scientific practices found in the Next Generation Science Standards. In addition, they offer ways for students to develop the disciplinary skills outlined in the Common Core State Standards. Many of today's teachers-- like you-- want to find new ways to engage students in scientific practices and help students learn more from lab activities. Argument-Driven Inquiry in Biology does all of this even as it gives students the chance to practice reading, writing, speaking, and using math in the context of science.
Designing and Teaching the Secondary Science Methods Course
Author: Aaron J. Sickel
Publisher: Springer
ISBN: 9463008810
Category : Education
Languages : en
Pages : 255
Book Description
The improvement of science education is a common goal worldwide. Countries not only seek to increase the number of individuals pursuing careers in science, but to improve scientific literacy among the general population. As the teacher is one of the greatest influences on student learning, a focus on the preparation of science teachers is essential in achieving these outcomes. A critical component of science teacher education is the methods course, where pedagogy and content coalesce. It is here that future science teachers begin to focus simultaneously on the knowledge, dispositions and skills for teaching secondary science in meaningful and effective ways. This book provides a comparison of secondary science methods courses from teacher education programs all over the world. Each chapter provides detailed descriptions of the national context, course design, teaching strategies, and assessments used within a particular science methods course, and is written by teacher educators who actively research science teacher education. The final chapter provides a synthesis of common themes and unique features across contexts, and offers directions for future research on science methods courses. This book offers a unique combination of ‘behind the scenes’ thinking for secondary science methods course designs along with practical teaching and assessment strategies, and will be a useful resource for teacher educators in a variety of international contexts.
Publisher: Springer
ISBN: 9463008810
Category : Education
Languages : en
Pages : 255
Book Description
The improvement of science education is a common goal worldwide. Countries not only seek to increase the number of individuals pursuing careers in science, but to improve scientific literacy among the general population. As the teacher is one of the greatest influences on student learning, a focus on the preparation of science teachers is essential in achieving these outcomes. A critical component of science teacher education is the methods course, where pedagogy and content coalesce. It is here that future science teachers begin to focus simultaneously on the knowledge, dispositions and skills for teaching secondary science in meaningful and effective ways. This book provides a comparison of secondary science methods courses from teacher education programs all over the world. Each chapter provides detailed descriptions of the national context, course design, teaching strategies, and assessments used within a particular science methods course, and is written by teacher educators who actively research science teacher education. The final chapter provides a synthesis of common themes and unique features across contexts, and offers directions for future research on science methods courses. This book offers a unique combination of ‘behind the scenes’ thinking for secondary science methods course designs along with practical teaching and assessment strategies, and will be a useful resource for teacher educators in a variety of international contexts.
Teaching the Content Areas to English Language Learners in Secondary Schools
Author: Luciana C. de Oliveira
Publisher: Springer
ISBN: 3030022455
Category : Education
Languages : en
Pages : 334
Book Description
This practitioner-based book provides different approaches for reaching an increasing population in today’s schools - English language learners (ELLs). The recent development and adoption of the Common Core State Standards for English Language Arts and Literacy in History/Social Studies, Science, and Technical Subjects (CCSS-ELA/Literacy), the Common Core State Standards for Mathematics, the C3 Framework, and the Next Generation Science Standards (NGSS) highlight the role that teachers have in developing discipline-specific competencies. This requires new and innovative approaches for teaching the content areas to all students. The book begins with an introduction that contextualizes the chapters in which the editors highlight transdisciplinary theories and approaches that cut across content areas. In addition, the editors include a table that provides a matrix of how strategies and theories map across the chapters. The four sections of the book represent the following content areas: English language arts, mathematics, science, and social studies. This book offers practical guidance that is grounded in relevant theory and research and offers teachers suggestions on how to use the approaches described.
Publisher: Springer
ISBN: 3030022455
Category : Education
Languages : en
Pages : 334
Book Description
This practitioner-based book provides different approaches for reaching an increasing population in today’s schools - English language learners (ELLs). The recent development and adoption of the Common Core State Standards for English Language Arts and Literacy in History/Social Studies, Science, and Technical Subjects (CCSS-ELA/Literacy), the Common Core State Standards for Mathematics, the C3 Framework, and the Next Generation Science Standards (NGSS) highlight the role that teachers have in developing discipline-specific competencies. This requires new and innovative approaches for teaching the content areas to all students. The book begins with an introduction that contextualizes the chapters in which the editors highlight transdisciplinary theories and approaches that cut across content areas. In addition, the editors include a table that provides a matrix of how strategies and theories map across the chapters. The four sections of the book represent the following content areas: English language arts, mathematics, science, and social studies. This book offers practical guidance that is grounded in relevant theory and research and offers teachers suggestions on how to use the approaches described.