Basics of Applied Stochastic Processes

Basics of Applied Stochastic Processes PDF Author: Richard Serfozo
Publisher: Springer Science & Business Media
ISBN: 3540893326
Category : Mathematics
Languages : en
Pages : 452

Get Book Here

Book Description
Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system’s data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models. The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes.

Basics of Applied Stochastic Processes

Basics of Applied Stochastic Processes PDF Author: Richard Serfozo
Publisher: Springer Science & Business Media
ISBN: 3540893326
Category : Mathematics
Languages : en
Pages : 452

Get Book Here

Book Description
Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system’s data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models. The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes.

Applied Stochastic Processes

Applied Stochastic Processes PDF Author: Mario Lefebvre
Publisher: Springer Science & Business Media
ISBN: 0387489762
Category : Mathematics
Languages : en
Pages : 395

Get Book Here

Book Description
This book uses a distinctly applied framework to present the most important topics in stochastic processes, including Gaussian and Markovian processes, Markov Chains, Poisson processes, Brownian motion and queueing theory. The book also examines in detail special diffusion processes, with implications for finance, various generalizations of Poisson processes, and renewal processes. It contains numerous examples and approximately 350 advanced problems that reinforce both concepts and applications. Entertaining mini-biographies of mathematicians give an enriching historical context. The book includes statistical tables and solutions to the even-numbered problems at the end.

Applied Stochastic Analysis

Applied Stochastic Analysis PDF Author: Weinan E
Publisher: American Mathematical Soc.
ISBN: 1470465698
Category : Education
Languages : en
Pages : 305

Get Book Here

Book Description
This is a textbook for advanced undergraduate students and beginning graduate students in applied mathematics. It presents the basic mathematical foundations of stochastic analysis (probability theory and stochastic processes) as well as some important practical tools and applications (e.g., the connection with differential equations, numerical methods, path integrals, random fields, statistical physics, chemical kinetics, and rare events). The book strikes a nice balance between mathematical formalism and intuitive arguments, a style that is most suited for applied mathematicians. Readers can learn both the rigorous treatment of stochastic analysis as well as practical applications in modeling and simulation. Numerous exercises nicely supplement the main exposition.

A Course in Applied Stochastic Processes

A Course in Applied Stochastic Processes PDF Author: A. Goswami
Publisher: Springer
ISBN: 9386279312
Category : Mathematics
Languages : en
Pages : 226

Get Book Here

Book Description


Applied Stochastic Processes and Control for Jump-Diffusions

Applied Stochastic Processes and Control for Jump-Diffusions PDF Author: Floyd B. Hanson
Publisher: SIAM
ISBN: 9780898718638
Category : Mathematics
Languages : en
Pages : 472

Get Book Here

Book Description
This self-contained, practical, entry-level text integrates the basic principles of applied mathematics, applied probability, and computational science for a clear presentation of stochastic processes and control for jump diffusions in continuous time. The author covers the important problem of controlling these systems and, through the use of a jump calculus construction, discusses the strong role of discontinuous and nonsmooth properties versus random properties in stochastic systems.

Elements of Applied Stochastic Processes

Elements of Applied Stochastic Processes PDF Author: U. Narayan Bhat
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 496

Get Book Here

Book Description
The third edition of this volume improves on the last edition by condensing the material and organizing it into a more teachable format. It provides more in-depth coverage of Markov chains and simple Markov process and gives added emphasis to statistical inference in stochastic processes.

Theory and Applications of Stochastic Processes

Theory and Applications of Stochastic Processes PDF Author: Zeev Schuss
Publisher: Springer Science & Business Media
ISBN: 1441916059
Category : Mathematics
Languages : en
Pages : 486

Get Book Here

Book Description
Stochastic processes and diffusion theory are the mathematical underpinnings of many scientific disciplines, including statistical physics, physical chemistry, molecular biophysics, communications theory and many more. Many books, reviews and research articles have been published on this topic, from the purely mathematical to the most practical. This book offers an analytical approach to stochastic processes that are most common in the physical and life sciences, as well as in optimal control and in the theory of filltering of signals from noisy measurements. Its aim is to make probability theory in function space readily accessible to scientists trained in the traditional methods of applied mathematics, such as integral, ordinary, and partial differential equations and asymptotic methods, rather than in probability and measure theory.

Applied Stochastic Differential Equations

Applied Stochastic Differential Equations PDF Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327

Get Book Here

Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Stochastic Processes and Applications

Stochastic Processes and Applications PDF Author: Grigorios A. Pavliotis
Publisher: Springer
ISBN: 1493913239
Category : Mathematics
Languages : en
Pages : 345

Get Book Here

Book Description
This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.

Stochastic Processes with Applications

Stochastic Processes with Applications PDF Author: Rabi N. Bhattacharya
Publisher: SIAM
ISBN: 0898716896
Category : Mathematics
Languages : en
Pages : 726

Get Book Here

Book Description
This book develops systematically and rigorously, yet in an expository and lively manner, the evolution of general random processes and their large time properties such as transience, recurrence, and convergence to steady states. The emphasis is on the most important classes of these processes from the viewpoint of theory as well as applications, namely, Markov processes. The book features very broad coverage of the most applicable aspects of stochastic processes, including sufficient material for self-contained courses on random walks in one and multiple dimensions; Markov chains in discrete and continuous times, including birth-death processes; Brownian motion and diffusions; stochastic optimization; and stochastic differential equations. This book is for graduate students in mathematics, statistics, science and engineering, and it may also be used as a reference by professionals in diverse fields whose work involves the application of probability.