Author: Peter Henrici
Publisher: John Wiley & Sons
ISBN: 9780471608417
Category : Mathematics
Languages : en
Pages : 704
Book Description
Presents applications as well as the basic theory of analytic functions of one or several complex variables. The first volume discusses applications and basic theory of conformal mapping and the solution of algebraic and transcendental equations. Volume Two covers topics broadly connected with ordinary differental equations: special functions, integral transforms, asymptotics and continued fractions. Volume Three details discrete fourier analysis, cauchy integrals, construction of conformal maps, univalent functions, potential theory in the plane and polynomial expansions.
Applied and Computational Complex Analysis, Volume 1
Author: Peter Henrici
Publisher: John Wiley & Sons
ISBN: 9780471608417
Category : Mathematics
Languages : en
Pages : 704
Book Description
Presents applications as well as the basic theory of analytic functions of one or several complex variables. The first volume discusses applications and basic theory of conformal mapping and the solution of algebraic and transcendental equations. Volume Two covers topics broadly connected with ordinary differental equations: special functions, integral transforms, asymptotics and continued fractions. Volume Three details discrete fourier analysis, cauchy integrals, construction of conformal maps, univalent functions, potential theory in the plane and polynomial expansions.
Publisher: John Wiley & Sons
ISBN: 9780471608417
Category : Mathematics
Languages : en
Pages : 704
Book Description
Presents applications as well as the basic theory of analytic functions of one or several complex variables. The first volume discusses applications and basic theory of conformal mapping and the solution of algebraic and transcendental equations. Volume Two covers topics broadly connected with ordinary differental equations: special functions, integral transforms, asymptotics and continued fractions. Volume Three details discrete fourier analysis, cauchy integrals, construction of conformal maps, univalent functions, potential theory in the plane and polynomial expansions.
Applied and Computational Complex Analysis, Volume 2
Author: Peter Henrici
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 682
Book Description
A self-contained presentation of the major areas of complex analysis that are referred to and used in applied mathematics and mathematical physics. Topics discussed include infinite products, ordinary differential equations and asymptotic methods.
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 682
Book Description
A self-contained presentation of the major areas of complex analysis that are referred to and used in applied mathematics and mathematical physics. Topics discussed include infinite products, ordinary differential equations and asymptotic methods.
Applied and Computational Complex Analysis, Volume 3
Author: Peter Henrici
Publisher: John Wiley & Sons
ISBN: 9780471589860
Category : Mathematics
Languages : en
Pages : 660
Book Description
Presents applications as well as the basic theory of analytic functions of one or several complex variables. The first volume discusses applications and basic theory of conformal mapping and the solution of algebraic and transcendental equations. Volume Two covers topics broadly connected with ordinary differental equations: special functions, integral transforms, asymptotics and continued fractions. Volume Three details discrete fourier analysis, cauchy integrals, construction of conformal maps, univalent functions, potential theory in the plane and polynomial expansions.
Publisher: John Wiley & Sons
ISBN: 9780471589860
Category : Mathematics
Languages : en
Pages : 660
Book Description
Presents applications as well as the basic theory of analytic functions of one or several complex variables. The first volume discusses applications and basic theory of conformal mapping and the solution of algebraic and transcendental equations. Volume Two covers topics broadly connected with ordinary differental equations: special functions, integral transforms, asymptotics and continued fractions. Volume Three details discrete fourier analysis, cauchy integrals, construction of conformal maps, univalent functions, potential theory in the plane and polynomial expansions.
Complex Analysis
Author: Elias M. Stein
Publisher: Princeton University Press
ISBN: 1400831156
Category : Mathematics
Languages : en
Pages : 398
Book Description
With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
Publisher: Princeton University Press
ISBN: 1400831156
Category : Mathematics
Languages : en
Pages : 398
Book Description
With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
Classical Complex Analysis
Author: I-Hsiung Lin
Publisher: World Scientific
ISBN: 9814271284
Category : Mathematics
Languages : en
Pages : 713
Book Description
Classical Complex Analysis provides an introduction to one of the remarkable branches of exact science, with an emphasis on the geometric aspects of analytic functions. This volume begins with a geometric description of what a complex number is, followed by a detailed account of algebraic, analytic and geometric properties of standard complex-valued functions. Geometric properties of analytic functions are then developed and described In detail, and various applications of residues are Included; analytic continuation is also introduced. --Book Jacket.
Publisher: World Scientific
ISBN: 9814271284
Category : Mathematics
Languages : en
Pages : 713
Book Description
Classical Complex Analysis provides an introduction to one of the remarkable branches of exact science, with an emphasis on the geometric aspects of analytic functions. This volume begins with a geometric description of what a complex number is, followed by a detailed account of algebraic, analytic and geometric properties of standard complex-valued functions. Geometric properties of analytic functions are then developed and described In detail, and various applications of residues are Included; analytic continuation is also introduced. --Book Jacket.
Scientific Computation on Mathematical Problems and Conjectures
Author: Richard S. Varga
Publisher: SIAM
ISBN: 0898712572
Category : Mathematics
Languages : en
Pages : 128
Book Description
This book studies the use of scientific computation as a tool in attacking a number of mathematical problems and conjectures. In this case, scientific computation refers primarily to computations that are carried out with a large number of significant digits, for calculations associated with a variety of numerical techniques such as the (second) Remez algorithm in polynomial and rational approximation theory, Richardson extrapolation of sequences of numbers, the accurate finding of zeros of polynomials of large degree, and the numerical approximation of integrals by quadrature techniques. The goal of this book is not to delve into the specialized field dealing with the creation of robust and reliable software needed to implement these high-precision calculations, but rather to emphasize the enormous power that existing software brings to the mathematician's arsenal of weapons for attacking mathematical problems and conjectures.
Publisher: SIAM
ISBN: 0898712572
Category : Mathematics
Languages : en
Pages : 128
Book Description
This book studies the use of scientific computation as a tool in attacking a number of mathematical problems and conjectures. In this case, scientific computation refers primarily to computations that are carried out with a large number of significant digits, for calculations associated with a variety of numerical techniques such as the (second) Remez algorithm in polynomial and rational approximation theory, Richardson extrapolation of sequences of numbers, the accurate finding of zeros of polynomials of large degree, and the numerical approximation of integrals by quadrature techniques. The goal of this book is not to delve into the specialized field dealing with the creation of robust and reliable software needed to implement these high-precision calculations, but rather to emphasize the enormous power that existing software brings to the mathematician's arsenal of weapons for attacking mathematical problems and conjectures.
Mathematics for the Analysis of Algorithms
Author: Daniel H. Greene
Publisher: Springer Science & Business Media
ISBN: 0817647295
Category : Computers
Languages : en
Pages : 141
Book Description
This monograph collects some fundamental mathematical techniques that are required for the analysis of algorithms. It builds on the fundamentals of combinatorial analysis and complex variable theory to present many of the major paradigms used in the precise analysis of algorithms, emphasizing the more difficult notions. The authors cover recurrence relations, operator methods, and asymptotic analysis in a format that is concise enough for easy reference yet detailed enough for those with little background with the material.
Publisher: Springer Science & Business Media
ISBN: 0817647295
Category : Computers
Languages : en
Pages : 141
Book Description
This monograph collects some fundamental mathematical techniques that are required for the analysis of algorithms. It builds on the fundamentals of combinatorial analysis and complex variable theory to present many of the major paradigms used in the precise analysis of algorithms, emphasizing the more difficult notions. The authors cover recurrence relations, operator methods, and asymptotic analysis in a format that is concise enough for easy reference yet detailed enough for those with little background with the material.
Analytic Combinatorics in Several Variables
Author: Robin Pemantle
Publisher: Cambridge University Press
ISBN: 1108836623
Category : Mathematics
Languages : en
Pages : 593
Book Description
Introduces the theory of multivariate generating functions, with new exercises, computational examples, and a conceptual overview chapter.
Publisher: Cambridge University Press
ISBN: 1108836623
Category : Mathematics
Languages : en
Pages : 593
Book Description
Introduces the theory of multivariate generating functions, with new exercises, computational examples, and a conceptual overview chapter.
NIST Handbook of Mathematical Functions Hardback and CD-ROM
Author: Frank W. J. Olver
Publisher: Cambridge University Press
ISBN: 0521192250
Category : Mathematics
Languages : en
Pages : 968
Book Description
The new standard reference on mathematical functions, replacing the classic but outdated handbook from Abramowitz and Stegun. Includes PDF version.
Publisher: Cambridge University Press
ISBN: 0521192250
Category : Mathematics
Languages : en
Pages : 968
Book Description
The new standard reference on mathematical functions, replacing the classic but outdated handbook from Abramowitz and Stegun. Includes PDF version.
Practical Extrapolation Methods
Author: Avram Sidi
Publisher: Cambridge University Press
ISBN: 9780521661591
Category : Computers
Languages : en
Pages : 546
Book Description
Table of contents
Publisher: Cambridge University Press
ISBN: 9780521661591
Category : Computers
Languages : en
Pages : 546
Book Description
Table of contents