Applications of Vector Analysis and Complex Variables in Engineering

Applications of Vector Analysis and Complex Variables in Engineering PDF Author: Otto D. L. Strack
Publisher: Springer Nature
ISBN: 3030411680
Category : Technology & Engineering
Languages : en
Pages : 216

Get Book Here

Book Description
This textbook presents the application of mathematical methods and theorems tosolve engineering problems, rather than focusing on mathematical proofs. Applications of Vector Analysis and Complex Variables in Engineering explains the mathematical principles in a manner suitable for engineering students, who generally think quite differently than students of mathematics. The objective is to emphasize mathematical methods and applications, rather than emphasizing general theorems and principles, for which the reader is referred to the literature. Vector analysis plays an important role in engineering, and is presented in terms of indicial notation, making use of the Einstein summation convention. This text differs from most texts in that symbolic vector notation is completely avoided, as suggested in the textbooks on tensor algebra and analysis written in German by Duschek and Hochreiner, in the 1960s. The defining properties of vector fields, the divergence and curl, are introduced in terms of fluid mechanics. The integral theorems of Gauss (the divergence theorem), Stokes, and Green are introduced also in the context of fluid mechanics. The final application of vector analysis consists of the introduction of non-Cartesian coordinate systems with straight axes, the formal definition of vectors and tensors. The stress and strain tensors are defined as an application. Partial differential equations of the first and second order are discussed. Two-dimensional linear partial differential equations of the second order are covered, emphasizing the three types of equation: hyperbolic, parabolic, and elliptic. The hyperbolic partial differential equations have two real characteristic directions, and writing the equations along these directions simplifies the solution process. The parabolic partial differential equations have two coinciding characteristics; this gives useful information regarding the character of the equation, but does not help in solving problems. The elliptic partial differential equations do not have real characteristics. In contrast to most texts, rather than abandoning the idea of using characteristics, here the complex characteristics are determined, and the differential equations are written along these characteristics. This leads to a generalized complex variable system, introduced by Wirtinger. The vector field is written in terms of a complex velocity, and the divergence and the curl of the vector field is written in complex form, reducing both equations to a single one. Complex variable methods are applied to elliptical problems in fluid mechanics, and linear elasticity. The techniques presented for solving parabolic problems are the Laplace transform and separation of variables, illustrated for problems of heat flow and soil mechanics. Hyperbolic problems of vibrating strings and bars, governed by the wave equation are solved by the method of characteristics as well as by Laplace transform. The method of characteristics for quasi-linear hyperbolic partial differential equations is illustrated for the case of a failing granular material, such as sand, underneath a strip footing. The Navier Stokes equations are derived and discussed in the final chapter as an illustration of a highly non-linear set of partial differential equations and the solutions are interpreted by illustrating the role of rotation (curl) in energy transfer of a fluid.

Applications of Vector Analysis and Complex Variables in Engineering

Applications of Vector Analysis and Complex Variables in Engineering PDF Author: Otto D. L. Strack
Publisher: Springer Nature
ISBN: 3030411680
Category : Technology & Engineering
Languages : en
Pages : 216

Get Book Here

Book Description
This textbook presents the application of mathematical methods and theorems tosolve engineering problems, rather than focusing on mathematical proofs. Applications of Vector Analysis and Complex Variables in Engineering explains the mathematical principles in a manner suitable for engineering students, who generally think quite differently than students of mathematics. The objective is to emphasize mathematical methods and applications, rather than emphasizing general theorems and principles, for which the reader is referred to the literature. Vector analysis plays an important role in engineering, and is presented in terms of indicial notation, making use of the Einstein summation convention. This text differs from most texts in that symbolic vector notation is completely avoided, as suggested in the textbooks on tensor algebra and analysis written in German by Duschek and Hochreiner, in the 1960s. The defining properties of vector fields, the divergence and curl, are introduced in terms of fluid mechanics. The integral theorems of Gauss (the divergence theorem), Stokes, and Green are introduced also in the context of fluid mechanics. The final application of vector analysis consists of the introduction of non-Cartesian coordinate systems with straight axes, the formal definition of vectors and tensors. The stress and strain tensors are defined as an application. Partial differential equations of the first and second order are discussed. Two-dimensional linear partial differential equations of the second order are covered, emphasizing the three types of equation: hyperbolic, parabolic, and elliptic. The hyperbolic partial differential equations have two real characteristic directions, and writing the equations along these directions simplifies the solution process. The parabolic partial differential equations have two coinciding characteristics; this gives useful information regarding the character of the equation, but does not help in solving problems. The elliptic partial differential equations do not have real characteristics. In contrast to most texts, rather than abandoning the idea of using characteristics, here the complex characteristics are determined, and the differential equations are written along these characteristics. This leads to a generalized complex variable system, introduced by Wirtinger. The vector field is written in terms of a complex velocity, and the divergence and the curl of the vector field is written in complex form, reducing both equations to a single one. Complex variable methods are applied to elliptical problems in fluid mechanics, and linear elasticity. The techniques presented for solving parabolic problems are the Laplace transform and separation of variables, illustrated for problems of heat flow and soil mechanics. Hyperbolic problems of vibrating strings and bars, governed by the wave equation are solved by the method of characteristics as well as by Laplace transform. The method of characteristics for quasi-linear hyperbolic partial differential equations is illustrated for the case of a failing granular material, such as sand, underneath a strip footing. The Navier Stokes equations are derived and discussed in the final chapter as an illustration of a highly non-linear set of partial differential equations and the solutions are interpreted by illustrating the role of rotation (curl) in energy transfer of a fluid.

Complex Analysis with Vector Calculus

Complex Analysis with Vector Calculus PDF Author: T. M. J. A. Cooray
Publisher: Alpha Science Int'l Ltd.
ISBN: 9781842653609
Category : Mathematics
Languages : en
Pages : 378

Get Book Here

Book Description
Based on many years of experience of the author Complex Analysis with Vector Calculus provides clear and condensed treatment of the subject. It is primarily intended to be used by undergraduate students of engineering and science as a part of a course in engineering mathematics, where they are introduced to complex variable theory, through conceptual development of analysis. The book also introduces vector algebra, step by step, with due emphasis on various operations on vector field and scalar fields. Especially, it introduces proof of vector identities by use of a new approach and includes many examples to clarify the ideas and familiarize students with various techniques of problem solving.

Complex Variables with Applications

Complex Variables with Applications PDF Author: Saminathan Ponnusamy
Publisher: Birkhäuser
ISBN: 9780817671136
Category : Mathematics
Languages : en
Pages : 514

Get Book Here

Book Description
Explores the interrelations between real and complex numbers by adopting both generalization and specialization methods to move between them, while simultaneously examining their analytic and geometric characteristics Engaging exposition with discussions, remarks, questions, and exercises to motivate understanding and critical thinking skills Encludes numerous examples and applications relevant to science and engineering students

A History of Vector Analysis

A History of Vector Analysis PDF Author: Michael J. Crowe
Publisher: Courier Corporation
ISBN: 0486679101
Category : Mathematics
Languages : en
Pages : 306

Get Book Here

Book Description
Prize-winning study traces the rise of the vector concept from the discovery of complex numbers through the systems of hypercomplex numbers to the final acceptance around 1910 of the modern system of vector analysis.

Applied Complex Variables for Scientists and Engineers

Applied Complex Variables for Scientists and Engineers PDF Author: Yue Kuen Kwok
Publisher: Cambridge University Press
ISBN: 9780521004626
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
This is an introduction to complex variable methods for scientists and engineers. It begins by carefully defining complex numbers and analytic functions, and proceeds to give accounts of complex integration, Taylor series, singularities, residues and mappings. Both algebraic and geometric tools are employed to provide the greatest understanding, with many diagrams illustrating the concepts introduced. The emphasis is laid on understanding the use of methods, rather than on rigorous proofs. One feature that will appeal to scientists is the high proportion of the book devoted to applications of the material to physical problems. These include detailed treatments of potential theory, hydrodynamics, electrostatics, gravitation and the uses of the Laplace transform for partial differential equations. The text contains some 300 stimulating exercises of high quality, with solutions given to many of them. It will be highly suitable for students wishing to learn the elements of complex analysis in an applied context.

Vector Analysis for Mathematicians, Scientists and Engineers

Vector Analysis for Mathematicians, Scientists and Engineers PDF Author: S. Simons
Publisher: Elsevier
ISBN: 1483160211
Category : Mathematics
Languages : en
Pages : 201

Get Book Here

Book Description
Vector Analysis for Mathematicians, Scientists and Engineers, Second Edition, provides an understanding of the methods of vector algebra and calculus to the extent that the student will readily follow those works which make use of them, and further, will be able to employ them himself in his own branch of science. New concepts and methods introduced are illustrated by examples drawn from fields with which the student is familiar, and a large number of both worked and unworked exercises are provided. The book begins with an introduction to vectors, covering their representation, addition, geometrical applications, and components. Separate chapters discuss the products of vectors; the products of three or four vectors; the differentiation of vectors; gradient, divergence, and curl; line, surface, and volume integrals; theorems of vector integration; and orthogonal curvilinear coordinates. The final chapter presents an application of vector analysis. Answers to odd-numbered exercises are provided as the end of the book.

Complex Analysis and Applications

Complex Analysis and Applications PDF Author: Alan Jeffrey
Publisher: CRC Press
ISBN: 020302656X
Category : Mathematics
Languages : en
Pages : 592

Get Book Here

Book Description
Complex Analysis and Applications, Second Edition explains complex analysis for students of applied mathematics and engineering. Restructured and completely revised, this textbook first develops the theory of complex analysis, and then examines its geometrical interpretation and application to Dirichlet and Neumann boundary value problems.

Vector Analysis

Vector Analysis PDF Author: Joseph George Coffin
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 320

Get Book Here

Book Description


Elementary Vector Analysis

Elementary Vector Analysis PDF Author: Charles Ernest Weatherburn
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 218

Get Book Here

Book Description


Vector-Valued Functions and Their Applications

Vector-Valued Functions and Their Applications PDF Author: Chuang-Gan Hu
Publisher:
ISBN: 9789401580311
Category :
Languages : en
Pages : 176

Get Book Here

Book Description