Cognitive Internet of Things: Frameworks, Tools and Applications

Cognitive Internet of Things: Frameworks, Tools and Applications PDF Author: Huimin Lu
Publisher: Springer
ISBN: 3030049469
Category : Technology & Engineering
Languages : en
Pages : 504

Get Book Here

Book Description
This book provides insights into the research in the fields of artificial intelligence in combination with Internet of Things (IoT) technologies. Today, the integration of artificial intelligence and IoT technologies is attracting considerable interest from both researchers and developers from academic fields and industries around the globe. It is foreseeable that the next generation of IoT research will focus on artificial intelligence/beyond artificial intelligence approaches. The rapidly growing numbers of artificial intelligence algorithms and big data solutions have significantly increased the number of potential applications for IoT technologies, but they have also created new challenges for the artificial intelligence community. This book shares the latest scientific advances in this area.

Cognitive Internet of Things: Frameworks, Tools and Applications

Cognitive Internet of Things: Frameworks, Tools and Applications PDF Author: Huimin Lu
Publisher: Springer
ISBN: 3030049469
Category : Technology & Engineering
Languages : en
Pages : 504

Get Book Here

Book Description
This book provides insights into the research in the fields of artificial intelligence in combination with Internet of Things (IoT) technologies. Today, the integration of artificial intelligence and IoT technologies is attracting considerable interest from both researchers and developers from academic fields and industries around the globe. It is foreseeable that the next generation of IoT research will focus on artificial intelligence/beyond artificial intelligence approaches. The rapidly growing numbers of artificial intelligence algorithms and big data solutions have significantly increased the number of potential applications for IoT technologies, but they have also created new challenges for the artificial intelligence community. This book shares the latest scientific advances in this area.

Urban Informatics

Urban Informatics PDF Author: Wenzhong Shi
Publisher: Springer Nature
ISBN: 9811589836
Category : Social Science
Languages : en
Pages : 941

Get Book Here

Book Description
This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity.

Learning Deep Architectures for AI

Learning Deep Architectures for AI PDF Author: Yoshua Bengio
Publisher: Now Publishers Inc
ISBN: 1601982941
Category : Computational learning theory
Languages : en
Pages : 145

Get Book Here

Book Description
Theoretical results suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching the parameter space of deep architectures is a difficult task, but learning algorithms such as those for Deep Belief Networks have recently been proposed to tackle this problem with notable success, beating the state-of-the-art in certain areas. This paper discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.

Deep Learning Applications in Medical Imaging

Deep Learning Applications in Medical Imaging PDF Author: Saxena, Sanjay
Publisher: IGI Global
ISBN: 1799850722
Category : Medical
Languages : en
Pages : 274

Get Book Here

Book Description
Before the modern age of medicine, the chance of surviving a terminal disease such as cancer was minimal at best. After embracing the age of computer-aided medical analysis technologies, however, detecting and preventing individuals from contracting a variety of life-threatening diseases has led to a greater survival percentage and increased the development of algorithmic technologies in healthcare. Deep Learning Applications in Medical Imaging is a pivotal reference source that provides vital research on the application of generating pictorial depictions of the interior of a body for medical intervention and clinical analysis. While highlighting topics such as artificial neural networks, disease prediction, and healthcare analysis, this publication explores image acquisition and pattern recognition as well as the methods of treatment and care. This book is ideally designed for diagnosticians, medical imaging specialists, healthcare professionals, physicians, medical researchers, academicians, and students.

Machine Learning for Future Wireless Communications

Machine Learning for Future Wireless Communications PDF Author: Fa-Long Luo
Publisher: John Wiley & Sons
ISBN: 1119562252
Category : Technology & Engineering
Languages : en
Pages : 490

Get Book Here

Book Description
A comprehensive review to the theory, application and research of machine learning for future wireless communications In one single volume, Machine Learning for Future Wireless Communications provides a comprehensive and highly accessible treatment to the theory, applications and current research developments to the technology aspects related to machine learning for wireless communications and networks. The technology development of machine learning for wireless communications has grown explosively and is one of the biggest trends in related academic, research and industry communities. Deep neural networks-based machine learning technology is a promising tool to attack the big challenge in wireless communications and networks imposed by the increasing demands in terms of capacity, coverage, latency, efficiency flexibility, compatibility, quality of experience and silicon convergence. The author – a noted expert on the topic – covers a wide range of topics including system architecture and optimization, physical-layer and cross-layer processing, air interface and protocol design, beamforming and antenna configuration, network coding and slicing, cell acquisition and handover, scheduling and rate adaption, radio access control, smart proactive caching and adaptive resource allocations. Uniquely organized into three categories: Spectrum Intelligence, Transmission Intelligence and Network Intelligence, this important resource: Offers a comprehensive review of the theory, applications and current developments of machine learning for wireless communications and networks Covers a range of topics from architecture and optimization to adaptive resource allocations Reviews state-of-the-art machine learning based solutions for network coverage Includes an overview of the applications of machine learning algorithms in future wireless networks Explores flexible backhaul and front-haul, cross-layer optimization and coding, full-duplex radio, digital front-end (DFE) and radio-frequency (RF) processing Written for professional engineers, researchers, scientists, manufacturers, network operators, software developers and graduate students, Machine Learning for Future Wireless Communications presents in 21 chapters a comprehensive review of the topic authored by an expert in the field.

Multidisciplinary Approaches to Neural Computing

Multidisciplinary Approaches to Neural Computing PDF Author: Anna Esposito
Publisher: Springer
ISBN: 331956904X
Category : Technology & Engineering
Languages : en
Pages : 380

Get Book Here

Book Description
This book presents a collection of contributions in the field of Artificial Neural Networks (ANNs). The themes addressed are multidisciplinary in nature, and closely connected in their ultimate aim to identify features from dynamic realistic signal exchanges and invariant machine representations that can be exploited to improve the quality of life of their end users. Mathematical tools like ANNs are currently exploited in many scientific domains because of their solid theoretical background and effectiveness in providing solutions to many demanding tasks such as appropriately processing (both for extracting features and recognizing) mono- and bi-dimensional dynamic signals, solving strong nonlinearities in the data and providing general solutions for deep and fully connected architectures. Given the multidisciplinary nature of their use and the interdisciplinary characterization of the problems they are applied to – which range from medicine to psychology, industrial and social robotics, computer vision, and signal processing (among many others) – ANNs may provide a basis for redefining the concept of information processing. These reflections are supported by theoretical models and applications presented in the chapters of this book. This book is of primary importance for: (a) the academic research community, (b) the ICT market, (c) PhD students and early-stage researchers, (d) schools, hospitals, rehabilitation and assisted-living centers, and (e) representatives of multimedia industries and standardization bodies.

Integration of Cloud Computing with Internet of Things

Integration of Cloud Computing with Internet of Things PDF Author: Monika Mangla
Publisher: John Wiley & Sons
ISBN: 1119769302
Category : Computers
Languages : en
Pages : 384

Get Book Here

Book Description
The book aims to integrate the aspects of IoT, Cloud computing and data analytics from diversified perspectives. The book also plans to discuss the recent research trends and advanced topics in the field which will be of interest to academicians and researchers working in this area. Thus, the book intends to help its readers to understand and explore the spectrum of applications of IoT, cloud computing and data analytics. Here, it is also worth mentioning that the book is believed to draw attention on the applications of said technology in various disciplines in order to obtain enhanced understanding of the readers. Also, this book focuses on the researches and challenges in the domain of IoT, Cloud computing and Data analytics from perspectives of various stakeholders.

Conformal Prediction for Reliable Machine Learning

Conformal Prediction for Reliable Machine Learning PDF Author: Vineeth Balasubramanian
Publisher: Newnes
ISBN: 0124017150
Category : Computers
Languages : en
Pages : 323

Get Book Here

Book Description
The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detection. As practitioners and researchers around the world apply and adapt the framework, this edited volume brings together these bodies of work, providing a springboard for further research as well as a handbook for application in real-world problems. - Understand the theoretical foundations of this important framework that can provide a reliable measure of confidence with predictions in machine learning - Be able to apply this framework to real-world problems in different machine learning settings, including classification, regression, and clustering - Learn effective ways of adapting the framework to newer problem settings, such as active learning, model selection, or change detection

Deep Learning Applications, Volume 2

Deep Learning Applications, Volume 2 PDF Author: M. Arif Wani
Publisher: Springer
ISBN: 9789811567582
Category : Technology & Engineering
Languages : en
Pages : 300

Get Book Here

Book Description
This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.

The Multi-Agent Transport Simulation MATSim

The Multi-Agent Transport Simulation MATSim PDF Author: Andreas Horni
Publisher: Ubiquity Press
ISBN: 190918876X
Category : Technology & Engineering
Languages : en
Pages : 620

Get Book Here

Book Description
The MATSim (Multi-Agent Transport Simulation) software project was started around 2006 with the goal of generating traffic and congestion patterns by following individual synthetic travelers through their daily or weekly activity programme. It has since then evolved from a collection of stand-alone C++ programs to an integrated Java-based framework which is publicly hosted, open-source available, automatically regression tested. It is currently used by about 40 groups throughout the world. This book takes stock of the current status. The first part of the book gives an introduction to the most important concepts, with the intention of enabling a potential user to set up and run basic simulations. The second part of the book describes how the basic functionality can be extended, for example by adding schedule-based public transit, electric or autonomous cars, paratransit, or within-day replanning. For each extension, the text provides pointers to the additional documentation and to the code base. It is also discussed how people with appropriate Java programming skills can write their own extensions, and plug them into the MATSim core. The project has started from the basic idea that traffic is a consequence of human behavior, and thus humans and their behavior should be the starting point of all modelling, and with the intuition that when simulations with 100 million particles are possible in computational physics, then behavior-oriented simulations with 10 million travelers should be possible in travel behavior research. The initial implementations thus combined concepts from computational physics and complex adaptive systems with concepts from travel behavior research. The third part of the book looks at theoretical concepts that are able to describe important aspects of the simulation system; for example, under certain conditions the code becomes a Monte Carlo engine sampling from a discrete choice model. Another important aspect is the interpretation of the MATSim score as utility in the microeconomic sense, opening up a connection to benefit cost analysis. Finally, the book collects use cases as they have been undertaken with MATSim. All current users of MATSim were invited to submit their work, and many followed with sometimes crisp and short and sometimes longer contributions, always with pointers to additional references. We hope that the book will become an invitation to explore, to build and to extend agent-based modeling of travel behavior from the stable and well tested core of MATSim documented here.