Author: Goundar, Sam
Publisher: IGI Global
ISBN: 1799866750
Category : Computers
Languages : en
Pages : 377
Book Description
With new technologies, such as computer vision, internet of things, mobile computing, e-governance and e-commerce, and wide applications of social media, organizations generate a huge volume of data and at a much faster rate than several years ago. Big data in large-/small-scale systems, characterized by high volume, diversity, and velocity, increasingly drives decision making and is changing the landscape of business intelligence. From governments to private organizations, from communities to individuals, all areas are being affected by this shift. There is a high demand for big data analytics that offer insights for computing efficiency, knowledge discovery, problem solving, and event prediction. To handle this demand and this increase in big data, there needs to be research on innovative and optimized machine learning algorithms in both large- and small-scale systems. Applications of Big Data in Large- and Small-Scale Systems includes state-of-the-art research findings on the latest development, up-to-date issues, and challenges in the field of big data and presents the latest innovative and intelligent applications related to big data. This book encompasses big data in various multidisciplinary fields from the medical field to agriculture, business research, and smart cities. While highlighting topics including machine learning, cloud computing, data visualization, and more, this book is a valuable reference tool for computer scientists, data scientists and analysts, engineers, practitioners, stakeholders, researchers, academicians, and students interested in the versatile and innovative use of big data in both large-scale and small-scale systems.
Applications of Big Data in Large- and Small-Scale Systems
Author: Goundar, Sam
Publisher: IGI Global
ISBN: 1799866750
Category : Computers
Languages : en
Pages : 377
Book Description
With new technologies, such as computer vision, internet of things, mobile computing, e-governance and e-commerce, and wide applications of social media, organizations generate a huge volume of data and at a much faster rate than several years ago. Big data in large-/small-scale systems, characterized by high volume, diversity, and velocity, increasingly drives decision making and is changing the landscape of business intelligence. From governments to private organizations, from communities to individuals, all areas are being affected by this shift. There is a high demand for big data analytics that offer insights for computing efficiency, knowledge discovery, problem solving, and event prediction. To handle this demand and this increase in big data, there needs to be research on innovative and optimized machine learning algorithms in both large- and small-scale systems. Applications of Big Data in Large- and Small-Scale Systems includes state-of-the-art research findings on the latest development, up-to-date issues, and challenges in the field of big data and presents the latest innovative and intelligent applications related to big data. This book encompasses big data in various multidisciplinary fields from the medical field to agriculture, business research, and smart cities. While highlighting topics including machine learning, cloud computing, data visualization, and more, this book is a valuable reference tool for computer scientists, data scientists and analysts, engineers, practitioners, stakeholders, researchers, academicians, and students interested in the versatile and innovative use of big data in both large-scale and small-scale systems.
Publisher: IGI Global
ISBN: 1799866750
Category : Computers
Languages : en
Pages : 377
Book Description
With new technologies, such as computer vision, internet of things, mobile computing, e-governance and e-commerce, and wide applications of social media, organizations generate a huge volume of data and at a much faster rate than several years ago. Big data in large-/small-scale systems, characterized by high volume, diversity, and velocity, increasingly drives decision making and is changing the landscape of business intelligence. From governments to private organizations, from communities to individuals, all areas are being affected by this shift. There is a high demand for big data analytics that offer insights for computing efficiency, knowledge discovery, problem solving, and event prediction. To handle this demand and this increase in big data, there needs to be research on innovative and optimized machine learning algorithms in both large- and small-scale systems. Applications of Big Data in Large- and Small-Scale Systems includes state-of-the-art research findings on the latest development, up-to-date issues, and challenges in the field of big data and presents the latest innovative and intelligent applications related to big data. This book encompasses big data in various multidisciplinary fields from the medical field to agriculture, business research, and smart cities. While highlighting topics including machine learning, cloud computing, data visualization, and more, this book is a valuable reference tool for computer scientists, data scientists and analysts, engineers, practitioners, stakeholders, researchers, academicians, and students interested in the versatile and innovative use of big data in both large-scale and small-scale systems.
New Horizons for a Data-Driven Economy
Author: José María Cavanillas
Publisher: Springer
ISBN: 3319215698
Category : Computers
Languages : en
Pages : 312
Book Description
In this book readers will find technological discussions on the existing and emerging technologies across the different stages of the big data value chain. They will learn about legal aspects of big data, the social impact, and about education needs and requirements. And they will discover the business perspective and how big data technology can be exploited to deliver value within different sectors of the economy. The book is structured in four parts: Part I “The Big Data Opportunity” explores the value potential of big data with a particular focus on the European context. It also describes the legal, business and social dimensions that need to be addressed, and briefly introduces the European Commission’s BIG project. Part II “The Big Data Value Chain” details the complete big data lifecycle from a technical point of view, ranging from data acquisition, analysis, curation and storage, to data usage and exploitation. Next, Part III “Usage and Exploitation of Big Data” illustrates the value creation possibilities of big data applications in various sectors, including industry, healthcare, finance, energy, media and public services. Finally, Part IV “A Roadmap for Big Data Research” identifies and prioritizes the cross-sectorial requirements for big data research, and outlines the most urgent and challenging technological, economic, political and societal issues for big data in Europe. This compendium summarizes more than two years of work performed by a leading group of major European research centers and industries in the context of the BIG project. It brings together research findings, forecasts and estimates related to this challenging technological context that is becoming the major axis of the new digitally transformed business environment.
Publisher: Springer
ISBN: 3319215698
Category : Computers
Languages : en
Pages : 312
Book Description
In this book readers will find technological discussions on the existing and emerging technologies across the different stages of the big data value chain. They will learn about legal aspects of big data, the social impact, and about education needs and requirements. And they will discover the business perspective and how big data technology can be exploited to deliver value within different sectors of the economy. The book is structured in four parts: Part I “The Big Data Opportunity” explores the value potential of big data with a particular focus on the European context. It also describes the legal, business and social dimensions that need to be addressed, and briefly introduces the European Commission’s BIG project. Part II “The Big Data Value Chain” details the complete big data lifecycle from a technical point of view, ranging from data acquisition, analysis, curation and storage, to data usage and exploitation. Next, Part III “Usage and Exploitation of Big Data” illustrates the value creation possibilities of big data applications in various sectors, including industry, healthcare, finance, energy, media and public services. Finally, Part IV “A Roadmap for Big Data Research” identifies and prioritizes the cross-sectorial requirements for big data research, and outlines the most urgent and challenging technological, economic, political and societal issues for big data in Europe. This compendium summarizes more than two years of work performed by a leading group of major European research centers and industries in the context of the BIG project. It brings together research findings, forecasts and estimates related to this challenging technological context that is becoming the major axis of the new digitally transformed business environment.
Application of Big Data, Blockchain, and Internet of Things for Education Informatization
Author: Yinjun Zhang
Publisher: Springer Nature
ISBN: 3031631366
Category :
Languages : en
Pages : 539
Book Description
Publisher: Springer Nature
ISBN: 3031631366
Category :
Languages : en
Pages : 539
Book Description
Smart Healthcare and Machine Learning
Author: Mousmi Ajay Chaurasia
Publisher: Springer Nature
ISBN: 981973312X
Category :
Languages : en
Pages : 340
Book Description
Publisher: Springer Nature
ISBN: 981973312X
Category :
Languages : en
Pages : 340
Book Description
Big Data
Author: James Warren
Publisher: Simon and Schuster
ISBN: 1638351104
Category : Computers
Languages : en
Pages : 481
Book Description
Summary Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive. Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases. This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful. What's Inside Introduction to big data systems Real-time processing of web-scale data Tools like Hadoop, Cassandra, and Storm Extensions to traditional database skills About the Authors Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing. Table of Contents A new paradigm for Big Data PART 1 BATCH LAYER Data model for Big Data Data model for Big Data: Illustration Data storage on the batch layer Data storage on the batch layer: Illustration Batch layer Batch layer: Illustration An example batch layer: Architecture and algorithms An example batch layer: Implementation PART 2 SERVING LAYER Serving layer Serving layer: Illustration PART 3 SPEED LAYER Realtime views Realtime views: Illustration Queuing and stream processing Queuing and stream processing: Illustration Micro-batch stream processing Micro-batch stream processing: Illustration Lambda Architecture in depth
Publisher: Simon and Schuster
ISBN: 1638351104
Category : Computers
Languages : en
Pages : 481
Book Description
Summary Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive. Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases. This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful. What's Inside Introduction to big data systems Real-time processing of web-scale data Tools like Hadoop, Cassandra, and Storm Extensions to traditional database skills About the Authors Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing. Table of Contents A new paradigm for Big Data PART 1 BATCH LAYER Data model for Big Data Data model for Big Data: Illustration Data storage on the batch layer Data storage on the batch layer: Illustration Batch layer Batch layer: Illustration An example batch layer: Architecture and algorithms An example batch layer: Implementation PART 2 SERVING LAYER Serving layer Serving layer: Illustration PART 3 SPEED LAYER Realtime views Realtime views: Illustration Queuing and stream processing Queuing and stream processing: Illustration Micro-batch stream processing Micro-batch stream processing: Illustration Lambda Architecture in depth
Specifying Big Data Benchmarks
Author: Tilmann Rabl
Publisher: Springer
ISBN: 3642539742
Category : Computers
Languages : en
Pages : 214
Book Description
This book constitutes the thoroughly refereed revised selected papers of the First Workshop on Big Data Benchmarks, WBDB 2012, held in San Jose, CA, USA, in May 2012 and the Second Workshop on Big Data Benchmarks, WBDB 2012, held in Pune, India, in December 2012. The 14 revised papers presented were carefully reviewed and selected from 60 submissions. The papers are organized in topical sections on benchmarking, foundations and tools; domain specific benchmarking; benchmarking hardware and end-to-end big data benchmarks.
Publisher: Springer
ISBN: 3642539742
Category : Computers
Languages : en
Pages : 214
Book Description
This book constitutes the thoroughly refereed revised selected papers of the First Workshop on Big Data Benchmarks, WBDB 2012, held in San Jose, CA, USA, in May 2012 and the Second Workshop on Big Data Benchmarks, WBDB 2012, held in Pune, India, in December 2012. The 14 revised papers presented were carefully reviewed and selected from 60 submissions. The papers are organized in topical sections on benchmarking, foundations and tools; domain specific benchmarking; benchmarking hardware and end-to-end big data benchmarks.
Big Data Analytics for Large-Scale Multimedia Search
Author: Stefanos Vrochidis
Publisher: John Wiley & Sons
ISBN: 1119376971
Category : Technology & Engineering
Languages : en
Pages : 372
Book Description
A timely overview of cutting edge technologies for multimedia retrieval with a special emphasis on scalability The amount of multimedia data available every day is enormous and is growing at an exponential rate, creating a great need for new and more efficient approaches for large scale multimedia search. This book addresses that need, covering the area of multimedia retrieval and placing a special emphasis on scalability. It reports the recent works in large scale multimedia search, including research methods and applications, and is structured so that readers with basic knowledge can grasp the core message while still allowing experts and specialists to drill further down into the analytical sections. Big Data Analytics for Large-Scale Multimedia Search covers: representation learning, concept and event-based video search in large collections; big data multimedia mining, large scale video understanding, big multimedia data fusion, large-scale social multimedia analysis, privacy and audiovisual content, data storage and management for big multimedia, large scale multimedia search, multimedia tagging using deep learning, interactive interfaces for big multimedia and medical decision support applications using large multimodal data. Addresses the area of multimedia retrieval and pays close attention to the issue of scalability Presents problem driven techniques with solutions that are demonstrated through realistic case studies and user scenarios Includes tables, illustrations, and figures Offers a Wiley-hosted BCS that features links to open source algorithms, data sets and tools Big Data Analytics for Large-Scale Multimedia Search is an excellent book for academics, industrial researchers, and developers interested in big multimedia data search retrieval. It will also appeal to consultants in computer science problems and professionals in the multimedia industry.
Publisher: John Wiley & Sons
ISBN: 1119376971
Category : Technology & Engineering
Languages : en
Pages : 372
Book Description
A timely overview of cutting edge technologies for multimedia retrieval with a special emphasis on scalability The amount of multimedia data available every day is enormous and is growing at an exponential rate, creating a great need for new and more efficient approaches for large scale multimedia search. This book addresses that need, covering the area of multimedia retrieval and placing a special emphasis on scalability. It reports the recent works in large scale multimedia search, including research methods and applications, and is structured so that readers with basic knowledge can grasp the core message while still allowing experts and specialists to drill further down into the analytical sections. Big Data Analytics for Large-Scale Multimedia Search covers: representation learning, concept and event-based video search in large collections; big data multimedia mining, large scale video understanding, big multimedia data fusion, large-scale social multimedia analysis, privacy and audiovisual content, data storage and management for big multimedia, large scale multimedia search, multimedia tagging using deep learning, interactive interfaces for big multimedia and medical decision support applications using large multimodal data. Addresses the area of multimedia retrieval and pays close attention to the issue of scalability Presents problem driven techniques with solutions that are demonstrated through realistic case studies and user scenarios Includes tables, illustrations, and figures Offers a Wiley-hosted BCS that features links to open source algorithms, data sets and tools Big Data Analytics for Large-Scale Multimedia Search is an excellent book for academics, industrial researchers, and developers interested in big multimedia data search retrieval. It will also appeal to consultants in computer science problems and professionals in the multimedia industry.
Integrating Blockchain Technology Into the Circular Economy
Author: Khan, Syed Abdul Rehman
Publisher: IGI Global
ISBN: 1799876446
Category : Business & Economics
Languages : en
Pages : 307
Book Description
In recent decades, the industrial revolution has increased economic growth despite its immersion in global environmental issues such as climate change. Researchers emphasize the adoption of circular economy practices in global supply chains and businesses for better socio-environmental sustainability without compromising economic growth. Integrating blockchain technology into business practices could promote the circular economy as well as global environmental sustainability. Integrating Blockchain Technology Into the Circular Economy discusses the technological advancements in circular economy practices, which provide better results for both economic growth and environmental sustainability. It provides relevant theoretical frameworks and the latest empirical research findings in the applications of blockchain technology. Covering topics such as big data analytics, financial market infrastructure, and sustainable performance, this book is an essential resource for managers, operations managers, executives, manufacturers, environmentalists, researchers, industry practitioners, students and educators of higher education, and academicians.
Publisher: IGI Global
ISBN: 1799876446
Category : Business & Economics
Languages : en
Pages : 307
Book Description
In recent decades, the industrial revolution has increased economic growth despite its immersion in global environmental issues such as climate change. Researchers emphasize the adoption of circular economy practices in global supply chains and businesses for better socio-environmental sustainability without compromising economic growth. Integrating blockchain technology into business practices could promote the circular economy as well as global environmental sustainability. Integrating Blockchain Technology Into the Circular Economy discusses the technological advancements in circular economy practices, which provide better results for both economic growth and environmental sustainability. It provides relevant theoretical frameworks and the latest empirical research findings in the applications of blockchain technology. Covering topics such as big data analytics, financial market infrastructure, and sustainable performance, this book is an essential resource for managers, operations managers, executives, manufacturers, environmentalists, researchers, industry practitioners, students and educators of higher education, and academicians.
Disruptive Technologies and Eco-Innovation for Sustainable Development
Author: Akkucuk, Ulas
Publisher: IGI Global
ISBN: 1799889025
Category : Technology & Engineering
Languages : en
Pages : 340
Book Description
The rise of technology in human culture has changed almost every facet of society. Technology is especially useful regarding sustainable development. These technologies can cause significant greenhouse gas reductions and other benefits in terms of logistics and smart cities. New technology applied in this way can greatly help the human effort to restore the environment. Disruptive Technologies and Eco-Innovation for Sustainable Development provides an in-depth look into the new techniques, strategies, and technologies for achieving environmental sustainability through best business and technology practices. The book covers topics such as eco-innovation, green criteria, Agriculture 4.0, and topics related to logic, philosophy, and history of science and technology from the green/sustainable point of view. It is essential for managers, academicians, scientists, students, and researchers in various government, public, and private sectors.
Publisher: IGI Global
ISBN: 1799889025
Category : Technology & Engineering
Languages : en
Pages : 340
Book Description
The rise of technology in human culture has changed almost every facet of society. Technology is especially useful regarding sustainable development. These technologies can cause significant greenhouse gas reductions and other benefits in terms of logistics and smart cities. New technology applied in this way can greatly help the human effort to restore the environment. Disruptive Technologies and Eco-Innovation for Sustainable Development provides an in-depth look into the new techniques, strategies, and technologies for achieving environmental sustainability through best business and technology practices. The book covers topics such as eco-innovation, green criteria, Agriculture 4.0, and topics related to logic, philosophy, and history of science and technology from the green/sustainable point of view. It is essential for managers, academicians, scientists, students, and researchers in various government, public, and private sectors.
Reshaping Intelligent Business and Industry
Author: Surjeet Dalal
Publisher: John Wiley & Sons
ISBN: 1119904870
Category : Computers
Languages : en
Pages : 644
Book Description
The convergence of Artif icial Intelligence (AI) and Internet of Things (IoT) is reshaping the way industries, businesses, and economies function; the 34 chapters in this collection show how the full potential of these technologies is being enabled to create intelligent machines that simulate smart behavior and support decision-making with little or no human interference, thereby providing startling organizational efficiencies. Readers will discover that in Reshaping Intelligent Business and Industry: The book unpacks the two superpowers of innovation, AI and IoT, and explains how they connect to better communicate and exchange information about online activities; How the center and the network’s edge generate predictive analytics or anomaly alerts; The meaning of AI at the edge and IoT networks. How bandwidth is reduced and privacy and security are enhanced; How AI applications increase operating efficiency, spawn new products and services, and enhance risk management; How AI and IoT create ‘intelligent’ devices and how new AI technology enables IoT to reach its full potential; Analyzes AIOT platforms and the handling of personal information for shared frameworks that remain sensitive to customers’ privacy while effectively utilizing data. Audience This book will appeal to all business and organization leaders, entrepreneurs, policymakers, and economists, as well as scientists, engineers, and students working in artificial intelligence, software engineering, and information technology.
Publisher: John Wiley & Sons
ISBN: 1119904870
Category : Computers
Languages : en
Pages : 644
Book Description
The convergence of Artif icial Intelligence (AI) and Internet of Things (IoT) is reshaping the way industries, businesses, and economies function; the 34 chapters in this collection show how the full potential of these technologies is being enabled to create intelligent machines that simulate smart behavior and support decision-making with little or no human interference, thereby providing startling organizational efficiencies. Readers will discover that in Reshaping Intelligent Business and Industry: The book unpacks the two superpowers of innovation, AI and IoT, and explains how they connect to better communicate and exchange information about online activities; How the center and the network’s edge generate predictive analytics or anomaly alerts; The meaning of AI at the edge and IoT networks. How bandwidth is reduced and privacy and security are enhanced; How AI applications increase operating efficiency, spawn new products and services, and enhance risk management; How AI and IoT create ‘intelligent’ devices and how new AI technology enables IoT to reach its full potential; Analyzes AIOT platforms and the handling of personal information for shared frameworks that remain sensitive to customers’ privacy while effectively utilizing data. Audience This book will appeal to all business and organization leaders, entrepreneurs, policymakers, and economists, as well as scientists, engineers, and students working in artificial intelligence, software engineering, and information technology.