Applications of Affine and Weyl Geometry

Applications of Affine and Weyl Geometry PDF Author: Eduardo García-Río
Publisher: Springer Nature
ISBN: 3031024052
Category : Mathematics
Languages : en
Pages : 152

Get Book Here

Book Description
Pseudo-Riemannian geometry is, to a large extent, the study of the Levi-Civita connection, which is the unique torsion-free connection compatible with the metric structure. There are, however, other affine connections which arise in different contexts, such as conformal geometry, contact structures, Weyl structures, and almost Hermitian geometry. In this book, we reverse this point of view and instead associate an auxiliary pseudo-Riemannian structure of neutral signature to certain affine connections and use this correspondence to study both geometries. We examine Walker structures, Riemannian extensions, and Kähler--Weyl geometry from this viewpoint. This book is intended to be accessible to mathematicians who are not expert in the subject and to students with a basic grounding in differential geometry. Consequently, the first chapter contains a comprehensive introduction to the basic results and definitions we shall need---proofs are included of many of these results to make it as self-contained as possible. Para-complex geometry plays an important role throughout the book and consequently is treated carefully in various chapters, as is the representation theory underlying various results. It is a feature of this book that, rather than as regarding para-complex geometry as an adjunct to complex geometry, instead, we shall often introduce the para-complex concepts first and only later pass to the complex setting. The second and third chapters are devoted to the study of various kinds of Riemannian extensions that associate to an affine structure on a manifold a corresponding metric of neutral signature on its cotangent bundle. These play a role in various questions involving the spectral geometry of the curvature operator and homogeneous connections on surfaces. The fourth chapter deals with Kähler--Weyl geometry, which lies, in a certain sense, midway between affine geometry and Kähler geometry. Another feature of the book is that we have tried wherever possible to find the original references in the subject for possible historical interest. Thus, we have cited the seminal papers of Levi-Civita, Ricci, Schouten, and Weyl, to name but a few exemplars. We have also given different proofs of various results than those that are given in the literature, to take advantage of the unified treatment of the area given herein.

Applications of Affine and Weyl Geometry

Applications of Affine and Weyl Geometry PDF Author: Eduardo García-Río
Publisher: Springer Nature
ISBN: 3031024052
Category : Mathematics
Languages : en
Pages : 152

Get Book Here

Book Description
Pseudo-Riemannian geometry is, to a large extent, the study of the Levi-Civita connection, which is the unique torsion-free connection compatible with the metric structure. There are, however, other affine connections which arise in different contexts, such as conformal geometry, contact structures, Weyl structures, and almost Hermitian geometry. In this book, we reverse this point of view and instead associate an auxiliary pseudo-Riemannian structure of neutral signature to certain affine connections and use this correspondence to study both geometries. We examine Walker structures, Riemannian extensions, and Kähler--Weyl geometry from this viewpoint. This book is intended to be accessible to mathematicians who are not expert in the subject and to students with a basic grounding in differential geometry. Consequently, the first chapter contains a comprehensive introduction to the basic results and definitions we shall need---proofs are included of many of these results to make it as self-contained as possible. Para-complex geometry plays an important role throughout the book and consequently is treated carefully in various chapters, as is the representation theory underlying various results. It is a feature of this book that, rather than as regarding para-complex geometry as an adjunct to complex geometry, instead, we shall often introduce the para-complex concepts first and only later pass to the complex setting. The second and third chapters are devoted to the study of various kinds of Riemannian extensions that associate to an affine structure on a manifold a corresponding metric of neutral signature on its cotangent bundle. These play a role in various questions involving the spectral geometry of the curvature operator and homogeneous connections on surfaces. The fourth chapter deals with Kähler--Weyl geometry, which lies, in a certain sense, midway between affine geometry and Kähler geometry. Another feature of the book is that we have tried wherever possible to find the original references in the subject for possible historical interest. Thus, we have cited the seminal papers of Levi-Civita, Ricci, Schouten, and Weyl, to name but a few exemplars. We have also given different proofs of various results than those that are given in the literature, to take advantage of the unified treatment of the area given herein.

Applications of Affine and Weyl Geometry

Applications of Affine and Weyl Geometry PDF Author: Eduardo García-Río
Publisher: Morgan & Claypool Publishers
ISBN: 1608457605
Category : Mathematics
Languages : en
Pages : 170

Get Book Here

Book Description
Pseudo-Riemannian geometry is, to a large extent, the study of the Levi-Civita connection, which is the unique torsion-free connection compatible with the metric structure. There are, however, other affine connections which arise in different contexts, such as conformal geometry, contact structures, Weyl structures, and almost Hermitian geometry. In this book, we reverse this point of view and instead associate an auxiliary pseudo-Riemannian structure of neutral signature to certain affine connections and use this correspondence to study both geometries. We examine Walker structures, Riemannian extensions, and Kähler--Weyl geometry from this viewpoint. This book is intended to be accessible to mathematicians who are not expert in the subject and to students with a basic grounding in differential geometry. Consequently, the first chapter contains a comprehensive introduction to the basic results and definitions we shall need---proofs are included of many of these results to make it as self-contained as possible. Para-complex geometry plays an important role throughout the book and consequently is treated carefully in various chapters, as is the representation theory underlying various results. It is a feature of this book that, rather than as regarding para-complex geometry as an adjunct to complex geometry, instead, we shall often introduce the para-complex concepts first and only later pass to the complex setting. The second and third chapters are devoted to the study of various kinds of Riemannian extensions that associate to an affine structure on a manifold a corresponding metric of neutral signature on its cotangent bundle. These play a role in various questions involving the spectral geometry of the curvature operator and homogeneous connections on surfaces. The fourth chapter deals with Kähler--Weyl geometry, which lies, in a certain sense, midway between affine geometry and Kähler geometry. Another feature of the book is that we have tried wherever possible to find the original references in the subject for possible historical interest. Thus, we have cited the seminal papers of Levi-Civita, Ricci, Schouten, and Weyl, to name but a few exemplars. We have also given different proofs of various results than those that are given in the literature, to take advantage of the unified treatment of the area given herein.

Applications of Affine and Weyl Geometry

Applications of Affine and Weyl Geometry PDF Author: Eduardo García-Río
Publisher:
ISBN: 9787560392011
Category : Geometry, Affine
Languages : en
Pages : 0

Get Book Here

Book Description


A First Course in Complex Analysis

A First Course in Complex Analysis PDF Author: Allan R. Willms
Publisher: Morgan & Claypool Publishers
ISBN: 1636393152
Category : Mathematics
Languages : en
Pages : 237

Get Book Here

Book Description
This book introduces complex analysis and is appropriate for a first course in the subject at typically the third-year University level. It introduces the exponential function very early but does so rigorously. It covers the usual topics of functions, differentiation, analyticity, contour integration, the theorems of Cauchy and their many consequences, Taylor and Laurent series, residue theory, the computation of certain improper real integrals, and a brief introduction to conformal mapping. Throughout the text an emphasis is placed on geometric properties of complex numbers and visualization of complex mappings.

An Introduction to Proofs with Set Theory

An Introduction to Proofs with Set Theory PDF Author: Daniel Ashlock
Publisher: Springer Nature
ISBN: 3031024265
Category : Mathematics
Languages : en
Pages : 233

Get Book Here

Book Description
This text is intended as an introduction to mathematical proofs for students. It is distilled from the lecture notes for a course focused on set theory subject matter as a means of teaching proofs. Chapter 1 contains an introduction and provides a brief summary of some background material students may be unfamiliar with. Chapters 2 and 3 introduce the basics of logic for students not yet familiar with these topics. Included is material on Boolean logic, propositions and predicates, logical operations, truth tables, tautologies and contradictions, rules of inference and logical arguments. Chapter 4 introduces mathematical proofs, including proof conventions, direct proofs, proof-by-contradiction, and proof-by-contraposition. Chapter 5 introduces the basics of naive set theory, including Venn diagrams and operations on sets. Chapter 6 introduces mathematical induction and recurrence relations. Chapter 7 introduces set-theoretic functions and covers injective, surjective, and bijective functions, as well as permutations. Chapter 8 covers the fundamental properties of the integers including primes, unique factorization, and Euclid's algorithm. Chapter 9 is an introduction to combinatorics; topics included are combinatorial proofs, binomial and multinomial coefficients, the Inclusion-Exclusion principle, and counting the number of surjective functions between finite sets. Chapter 10 introduces relations and covers equivalence relations and partial orders. Chapter 11 covers number bases, number systems, and operations. Chapter 12 covers cardinality, including basic results on countable and uncountable infinities, and introduces cardinal numbers. Chapter 13 expands on partial orders and introduces ordinal numbers. Chapter 14 examines the paradoxes of naive set theory and introduces and discusses axiomatic set theory. This chapter also includes Cantor's Paradox, Russel's Paradox, a discussion of axiomatic theories, an exposition on Zermelo‒Fraenkel Set Theory with the Axiom of Choice, and a brief explanation of Gödel's Incompleteness Theorems.

An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations PDF Author: Daniel J. Arrigo
Publisher: Springer Nature
ISBN: 3031024133
Category : Mathematics
Languages : en
Pages : 155

Get Book Here

Book Description
This book is an introduction to methods for solving partial differential equations (PDEs). After the introduction of the main four PDEs that could be considered the cornerstone of Applied Mathematics, the reader is introduced to a variety of PDEs that come from a variety of fields in the Natural Sciences and Engineering and is a springboard into this wonderful subject. The chapters include the following topics: First-order PDEs, Second-order PDEs, Fourier Series, Separation of Variables, and the Fourier Transform.The reader is guided through these chapters where techniques for solving first- and second-order PDEs are introduced. Each chapter ends with a series of exercises illustrating the material presented in each chapter. The book can be used as a textbook for any introductory course in PDEs typically found in both science and engineering programs and has been used at the University of Central Arkansas for over ten years.

Probability and Statistics for STEM

Probability and Statistics for STEM PDF Author: E.N. Barron
Publisher: Springer Nature
ISBN: 3031024273
Category : Mathematics
Languages : en
Pages : 243

Get Book Here

Book Description
One of the most important subjects for all engineers and scientists is probability and statistics. This book presents the basics of the essential topics in probability and statistics from a rigorous standpoint. The basics of probability underlying all statistics is presented first and then we cover the essential topics in statistics, confidence intervals, hypothesis testing, and linear regression. This book is suitable for any engineer or scientist who is comfortable with calculus and is meant to be covered in a one-semester format.

Fast Start Differential Calculus

Fast Start Differential Calculus PDF Author: Daniel Ashlock
Publisher: Springer Nature
ISBN: 3031024206
Category : Mathematics
Languages : en
Pages : 222

Get Book Here

Book Description
This book reviews the algebraic prerequisites of calculus, including solving equations, lines, quadratics, functions, logarithms, and trig functions. It introduces the derivative using the limit-based definition and covers the standard function library and the product, quotient, and chain rules. It explores the applications of the derivative to curve sketching and optimization and concludes with the formal definition of the limit, the squeeze theorem, and the mean value theorem.

Discrete Distributions in Engineering and the Applied Sciences

Discrete Distributions in Engineering and the Applied Sciences PDF Author: Rajan Chattamvelli
Publisher: Springer Nature
ISBN: 3031024257
Category : Mathematics
Languages : en
Pages : 205

Get Book Here

Book Description
This is an introductory book on discrete statistical distributions and its applications. It discusses only those that are widely used in the applications of probability and statistics in everyday life. The purpose is to give a self-contained introduction to classical discrete distributions in statistics. Instead of compiling the important formulas (which are available in many other textbooks), we focus on important applications of each distribution in various applied fields like bioinformatics, genomics, ecology, electronics, epidemiology, management, reliability, etc., making this book an indispensable resource for researchers and practitioners in several scientific fields. Examples are drawn from different fields. An up-to-date reference appears at the end of the book. Chapter 1 introduces the basic concepts on random variables, and gives a simple method to find the mean deviation (MD) of discrete distributions. The Bernoulli and binomial distributions are discussed in detail in Chapter 2. A short chapter on discrete uniform distribution appears next. The next two chapters are on geometric and negative binomial distributions. Chapter 6 discusses the Poisson distribution in-depth, including applications in various fields. Chapter 7 is on hypergeometric distribution. As most textbooks in the market either do not discuss, or contain only brief description of the negative hypergeometric distribution, we have included an entire chapter on it. A short chapter on logarithmic series distribution follows it, in which a theorem to find the kth moment of logarithmic distribution using (k-1)th moment of zero-truncated geometric distribution is presented. The last chapter is on multinomial distribution and its applications. The primary users of this book are professionals and practitioners in various fields of engineering and the applied sciences. It will also be of use to graduate students in statistics, research scholars in science disciplines, and teachers of statistics, biostatistics, biotechnology, education, and psychology.

Fast Start Advanced Calculus

Fast Start Advanced Calculus PDF Author: Daniel Ashlock
Publisher: Springer Nature
ISBN: 3031024222
Category : Mathematics
Languages : en
Pages : 179

Get Book Here

Book Description
This book continues the material in two early Fast Start calculus volumes to include multivariate calculus, sequences and series, and a variety of additional applications. These include partial derivatives and the optimization techniques that arise from them, including Lagrange multipliers. Volumes of rotation, arc length, and surface area are included in the additional applications of integration. Using multiple integrals, including computing volume and center of mass, is covered. The book concludes with an initial treatment of sequences, series, power series, and Taylor's series, including techniques of function approximation.