Author: Maya R. Gupta
Publisher: Now Publishers Inc
ISBN: 1601984308
Category : Computers
Languages : en
Pages : 87
Book Description
Introduces the expectation-maximization (EM) algorithm and provides an intuitive and mathematically rigorous understanding of this method. Theory and Use of the EM Algorithm is designed to be useful to both the EM novice and the experienced EM user looking to better understand the method and its use.
Theory and Use of the EM Algorithm
Author: Maya R. Gupta
Publisher: Now Publishers Inc
ISBN: 1601984308
Category : Computers
Languages : en
Pages : 87
Book Description
Introduces the expectation-maximization (EM) algorithm and provides an intuitive and mathematically rigorous understanding of this method. Theory and Use of the EM Algorithm is designed to be useful to both the EM novice and the experienced EM user looking to better understand the method and its use.
Publisher: Now Publishers Inc
ISBN: 1601984308
Category : Computers
Languages : en
Pages : 87
Book Description
Introduces the expectation-maximization (EM) algorithm and provides an intuitive and mathematically rigorous understanding of this method. Theory and Use of the EM Algorithm is designed to be useful to both the EM novice and the experienced EM user looking to better understand the method and its use.
Encyclopedia of Biometrics
Author: Stan Z. Li
Publisher: Springer Science & Business Media
ISBN: 0387730028
Category : Computers
Languages : en
Pages : 1466
Book Description
With an A–Z format, this encyclopedia provides easy access to relevant information on all aspects of biometrics. It features approximately 250 overview entries and 800 definitional entries. Each entry includes a definition, key words, list of synonyms, list of related entries, illustration(s), applications, and a bibliography. Most entries include useful literature references providing the reader with a portal to more detailed information.
Publisher: Springer Science & Business Media
ISBN: 0387730028
Category : Computers
Languages : en
Pages : 1466
Book Description
With an A–Z format, this encyclopedia provides easy access to relevant information on all aspects of biometrics. It features approximately 250 overview entries and 800 definitional entries. Each entry includes a definition, key words, list of synonyms, list of related entries, illustration(s), applications, and a bibliography. Most entries include useful literature references providing the reader with a portal to more detailed information.
Finite Mixture Models
Author: Geoffrey McLachlan
Publisher: John Wiley & Sons
ISBN: 047165406X
Category : Mathematics
Languages : en
Pages : 419
Book Description
An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.
Publisher: John Wiley & Sons
ISBN: 047165406X
Category : Mathematics
Languages : en
Pages : 419
Book Description
An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.
Probability for Machine Learning
Author: Jason Brownlee
Publisher: Machine Learning Mastery
ISBN:
Category : Computers
Languages : en
Pages : 319
Book Description
Probability is the bedrock of machine learning. You cannot develop a deep understanding and application of machine learning without it. Cut through the equations, Greek letters, and confusion, and discover the topics in probability that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover the importance of probability to machine learning, Bayesian probability, entropy, density estimation, maximum likelihood, and much more.
Publisher: Machine Learning Mastery
ISBN:
Category : Computers
Languages : en
Pages : 319
Book Description
Probability is the bedrock of machine learning. You cannot develop a deep understanding and application of machine learning without it. Cut through the equations, Greek letters, and confusion, and discover the topics in probability that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover the importance of probability to machine learning, Bayesian probability, entropy, density estimation, maximum likelihood, and much more.
Medical Applications of Finite Mixture Models
Author: Peter Schlattmann
Publisher: Springer Science & Business Media
ISBN: 3540686517
Category : Medical
Languages : en
Pages : 252
Book Description
Patients are not alike! This simple truth is often ignored in the analysis of me- cal data, since most of the time results are presented for the “average” patient. As a result, potential variability between patients is ignored when presenting, e.g., the results of a multiple linear regression model. In medicine there are more and more attempts to individualize therapy; thus, from the author’s point of view biostatis- cians should support these efforts. Therefore, one of the tasks of the statistician is to identify heterogeneity of patients and, if possible, to explain part of it with known explanatory covariates. Finite mixture models may be used to aid this purpose. This book tries to show that there are a large range of applications. They include the analysis of gene - pression data, pharmacokinetics, toxicology, and the determinants of beta-carotene plasma levels. Other examples include disease clustering, data from psychophysi- ogy, and meta-analysis of published studies. The book is intended as a resource for those interested in applying these methods.
Publisher: Springer Science & Business Media
ISBN: 3540686517
Category : Medical
Languages : en
Pages : 252
Book Description
Patients are not alike! This simple truth is often ignored in the analysis of me- cal data, since most of the time results are presented for the “average” patient. As a result, potential variability between patients is ignored when presenting, e.g., the results of a multiple linear regression model. In medicine there are more and more attempts to individualize therapy; thus, from the author’s point of view biostatis- cians should support these efforts. Therefore, one of the tasks of the statistician is to identify heterogeneity of patients and, if possible, to explain part of it with known explanatory covariates. Finite mixture models may be used to aid this purpose. This book tries to show that there are a large range of applications. They include the analysis of gene - pression data, pharmacokinetics, toxicology, and the determinants of beta-carotene plasma levels. Other examples include disease clustering, data from psychophysi- ogy, and meta-analysis of published studies. The book is intended as a resource for those interested in applying these methods.
Mixtures
Author: Kerrie L. Mengersen
Publisher: John Wiley & Sons
ISBN: 1119998441
Category : Mathematics
Languages : en
Pages : 352
Book Description
This book uses the EM (expectation maximization) algorithm to simultaneously estimate the missing data and unknown parameter(s) associated with a data set. The parameters describe the component distributions of the mixture; the distributions may be continuous or discrete. The editors provide a complete account of the applications, mathematical structure and statistical analysis of finite mixture distributions along with MCMC computational methods, together with a range of detailed discussions covering the applications of the methods and features chapters from the leading experts on the subject. The applications are drawn from scientific discipline, including biostatistics, computer science, ecology and finance. This area of statistics is important to a range of disciplines, and its methodology attracts interest from researchers in the fields in which it can be applied.
Publisher: John Wiley & Sons
ISBN: 1119998441
Category : Mathematics
Languages : en
Pages : 352
Book Description
This book uses the EM (expectation maximization) algorithm to simultaneously estimate the missing data and unknown parameter(s) associated with a data set. The parameters describe the component distributions of the mixture; the distributions may be continuous or discrete. The editors provide a complete account of the applications, mathematical structure and statistical analysis of finite mixture distributions along with MCMC computational methods, together with a range of detailed discussions covering the applications of the methods and features chapters from the leading experts on the subject. The applications are drawn from scientific discipline, including biostatistics, computer science, ecology and finance. This area of statistics is important to a range of disciplines, and its methodology attracts interest from researchers in the fields in which it can be applied.
The EM Algorithm and Extensions
Author: Geoffrey J. McLachlan
Publisher: John Wiley & Sons
ISBN: 0470191600
Category : Mathematics
Languages : en
Pages : 399
Book Description
The only single-source——now completely updated and revised——to offer a unified treatment of the theory, methodology, and applications of the EM algorithm Complete with updates that capture developments from the past decade, The EM Algorithm and Extensions, Second Edition successfully provides a basic understanding of the EM algorithm by describing its inception, implementation, and applicability in numerous statistical contexts. In conjunction with the fundamentals of the topic, the authors discuss convergence issues and computation of standard errors, and, in addition, unveil many parallels and connections between the EM algorithm and Markov chain Monte Carlo algorithms. Thorough discussions on the complexities and drawbacks that arise from the basic EM algorithm, such as slow convergence and lack of an in-built procedure to compute the covariance matrix of parameter estimates, are also presented. While the general philosophy of the First Edition has been maintained, this timely new edition has been updated, revised, and expanded to include: New chapters on Monte Carlo versions of the EM algorithm and generalizations of the EM algorithm New results on convergence, including convergence of the EM algorithm in constrained parameter spaces Expanded discussion of standard error computation methods, such as methods for categorical data and methods based on numerical differentiation Coverage of the interval EM, which locates all stationary points in a designated region of the parameter space Exploration of the EM algorithm's relationship with the Gibbs sampler and other Markov chain Monte Carlo methods Plentiful pedagogical elements—chapter introductions, lists of examples, author and subject indices, computer-drawn graphics, and a related Web site The EM Algorithm and Extensions, Second Edition serves as an excellent text for graduate-level statistics students and is also a comprehensive resource for theoreticians, practitioners, and researchers in the social and physical sciences who would like to extend their knowledge of the EM algorithm.
Publisher: John Wiley & Sons
ISBN: 0470191600
Category : Mathematics
Languages : en
Pages : 399
Book Description
The only single-source——now completely updated and revised——to offer a unified treatment of the theory, methodology, and applications of the EM algorithm Complete with updates that capture developments from the past decade, The EM Algorithm and Extensions, Second Edition successfully provides a basic understanding of the EM algorithm by describing its inception, implementation, and applicability in numerous statistical contexts. In conjunction with the fundamentals of the topic, the authors discuss convergence issues and computation of standard errors, and, in addition, unveil many parallels and connections between the EM algorithm and Markov chain Monte Carlo algorithms. Thorough discussions on the complexities and drawbacks that arise from the basic EM algorithm, such as slow convergence and lack of an in-built procedure to compute the covariance matrix of parameter estimates, are also presented. While the general philosophy of the First Edition has been maintained, this timely new edition has been updated, revised, and expanded to include: New chapters on Monte Carlo versions of the EM algorithm and generalizations of the EM algorithm New results on convergence, including convergence of the EM algorithm in constrained parameter spaces Expanded discussion of standard error computation methods, such as methods for categorical data and methods based on numerical differentiation Coverage of the interval EM, which locates all stationary points in a designated region of the parameter space Exploration of the EM algorithm's relationship with the Gibbs sampler and other Markov chain Monte Carlo methods Plentiful pedagogical elements—chapter introductions, lists of examples, author and subject indices, computer-drawn graphics, and a related Web site The EM Algorithm and Extensions, Second Edition serves as an excellent text for graduate-level statistics students and is also a comprehensive resource for theoreticians, practitioners, and researchers in the social and physical sciences who would like to extend their knowledge of the EM algorithm.
Mixture Models
Author: Bruce G. Lindsay
Publisher: IMS
ISBN: 9780940600324
Category : Mathematics
Languages : en
Pages : 184
Book Description
Publisher: IMS
ISBN: 9780940600324
Category : Mathematics
Languages : en
Pages : 184
Book Description
Mixture Models and Applications
Author: Nizar Bouguila
Publisher: Springer
ISBN: 3030238768
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
This book focuses on recent advances, approaches, theories and applications related to mixture models. In particular, it presents recent unsupervised and semi-supervised frameworks that consider mixture models as their main tool. The chapters considers mixture models involving several interesting and challenging problems such as parameters estimation, model selection, feature selection, etc. The goal of this book is to summarize the recent advances and modern approaches related to these problems. Each contributor presents novel research, a practical study, or novel applications based on mixture models, or a survey of the literature. Reports advances on classic problems in mixture modeling such as parameter estimation, model selection, and feature selection; Present theoretical and practical developments in mixture-based modeling and their importance in different applications; Discusses perspectives and challenging future works related to mixture modeling.
Publisher: Springer
ISBN: 3030238768
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
This book focuses on recent advances, approaches, theories and applications related to mixture models. In particular, it presents recent unsupervised and semi-supervised frameworks that consider mixture models as their main tool. The chapters considers mixture models involving several interesting and challenging problems such as parameters estimation, model selection, feature selection, etc. The goal of this book is to summarize the recent advances and modern approaches related to these problems. Each contributor presents novel research, a practical study, or novel applications based on mixture models, or a survey of the literature. Reports advances on classic problems in mixture modeling such as parameter estimation, model selection, and feature selection; Present theoretical and practical developments in mixture-based modeling and their importance in different applications; Discusses perspectives and challenging future works related to mixture modeling.
Model-Based Clustering and Classification for Data Science
Author: Charles Bouveyron
Publisher: Cambridge University Press
ISBN: 1108640591
Category : Mathematics
Languages : en
Pages : 447
Book Description
Cluster analysis finds groups in data automatically. Most methods have been heuristic and leave open such central questions as: how many clusters are there? Which method should I use? How should I handle outliers? Classification assigns new observations to groups given previously classified observations, and also has open questions about parameter tuning, robustness and uncertainty assessment. This book frames cluster analysis and classification in terms of statistical models, thus yielding principled estimation, testing and prediction methods, and sound answers to the central questions. It builds the basic ideas in an accessible but rigorous way, with extensive data examples and R code; describes modern approaches to high-dimensional data and networks; and explains such recent advances as Bayesian regularization, non-Gaussian model-based clustering, cluster merging, variable selection, semi-supervised and robust classification, clustering of functional data, text and images, and co-clustering. Written for advanced undergraduates in data science, as well as researchers and practitioners, it assumes basic knowledge of multivariate calculus, linear algebra, probability and statistics.
Publisher: Cambridge University Press
ISBN: 1108640591
Category : Mathematics
Languages : en
Pages : 447
Book Description
Cluster analysis finds groups in data automatically. Most methods have been heuristic and leave open such central questions as: how many clusters are there? Which method should I use? How should I handle outliers? Classification assigns new observations to groups given previously classified observations, and also has open questions about parameter tuning, robustness and uncertainty assessment. This book frames cluster analysis and classification in terms of statistical models, thus yielding principled estimation, testing and prediction methods, and sound answers to the central questions. It builds the basic ideas in an accessible but rigorous way, with extensive data examples and R code; describes modern approaches to high-dimensional data and networks; and explains such recent advances as Bayesian regularization, non-Gaussian model-based clustering, cluster merging, variable selection, semi-supervised and robust classification, clustering of functional data, text and images, and co-clustering. Written for advanced undergraduates in data science, as well as researchers and practitioners, it assumes basic knowledge of multivariate calculus, linear algebra, probability and statistics.