Author: Niclas Andreasson
Publisher: Studentlitteratur AB
ISBN: 9789144060774
Category : Mathematics
Languages : en
Pages : 484
Book Description
Optimisation, or mathematical programming, is a fundamental subject within decision science and operations research, in which mathematical decision models are constructed, analysed, and solved. The books focus lies on providing a basis for the analysis of optimisation models and of candidate optimal solutions for continuous optimisation models. The main part of the mathematical material therefore concerns the analysis and linear algebra that underlie the workings of convexity and duality, and necessary/sufficient local/global optimality conditions for continuous optimisation problems. Natural algorithms are then developed from these optimality conditions, and their most important convergence characteristics are analysed. The book answers many more questions of the form Why? and Why not? than How?. We use only elementary mathematics in the development of the book, yet are rigorous throughout. The book provides lecture, exercise and reading material for a first course on continuous optimisation and mathematical programming, geared towards third-year students, and has already been used as such for nearly ten years. The preface to the second edition describes the main changes made since the first, 2005, edition. The book can be used in mathematical optimisation courses at any mathematics, engineering, economics, and business schools. It is a perfect starting book for anyone who wishes to develop his/her understanding of the subject of optimisation, before actually applying it.
Anintroduction to Continuous Optimization / Second Edition
Author: Niclas Andreasson
Publisher: Studentlitteratur AB
ISBN: 9789144060774
Category : Mathematics
Languages : en
Pages : 484
Book Description
Optimisation, or mathematical programming, is a fundamental subject within decision science and operations research, in which mathematical decision models are constructed, analysed, and solved. The books focus lies on providing a basis for the analysis of optimisation models and of candidate optimal solutions for continuous optimisation models. The main part of the mathematical material therefore concerns the analysis and linear algebra that underlie the workings of convexity and duality, and necessary/sufficient local/global optimality conditions for continuous optimisation problems. Natural algorithms are then developed from these optimality conditions, and their most important convergence characteristics are analysed. The book answers many more questions of the form Why? and Why not? than How?. We use only elementary mathematics in the development of the book, yet are rigorous throughout. The book provides lecture, exercise and reading material for a first course on continuous optimisation and mathematical programming, geared towards third-year students, and has already been used as such for nearly ten years. The preface to the second edition describes the main changes made since the first, 2005, edition. The book can be used in mathematical optimisation courses at any mathematics, engineering, economics, and business schools. It is a perfect starting book for anyone who wishes to develop his/her understanding of the subject of optimisation, before actually applying it.
Publisher: Studentlitteratur AB
ISBN: 9789144060774
Category : Mathematics
Languages : en
Pages : 484
Book Description
Optimisation, or mathematical programming, is a fundamental subject within decision science and operations research, in which mathematical decision models are constructed, analysed, and solved. The books focus lies on providing a basis for the analysis of optimisation models and of candidate optimal solutions for continuous optimisation models. The main part of the mathematical material therefore concerns the analysis and linear algebra that underlie the workings of convexity and duality, and necessary/sufficient local/global optimality conditions for continuous optimisation problems. Natural algorithms are then developed from these optimality conditions, and their most important convergence characteristics are analysed. The book answers many more questions of the form Why? and Why not? than How?. We use only elementary mathematics in the development of the book, yet are rigorous throughout. The book provides lecture, exercise and reading material for a first course on continuous optimisation and mathematical programming, geared towards third-year students, and has already been used as such for nearly ten years. The preface to the second edition describes the main changes made since the first, 2005, edition. The book can be used in mathematical optimisation courses at any mathematics, engineering, economics, and business schools. It is a perfect starting book for anyone who wishes to develop his/her understanding of the subject of optimisation, before actually applying it.
An Introduction to Continuous Optimization
Author: Niclas Andreasson
Publisher: Courier Dover Publications
ISBN: 0486802876
Category : Mathematics
Languages : en
Pages : 515
Book Description
This treatment focuses on the analysis and algebra underlying the workings of convexity and duality and necessary/sufficient local/global optimality conditions for unconstrained and constrained optimization problems. 2015 edition.
Publisher: Courier Dover Publications
ISBN: 0486802876
Category : Mathematics
Languages : en
Pages : 515
Book Description
This treatment focuses on the analysis and algebra underlying the workings of convexity and duality and necessary/sufficient local/global optimality conditions for unconstrained and constrained optimization problems. 2015 edition.
Introduction to Global Optimization
Author: R. Horst
Publisher: Springer Science & Business Media
ISBN: 9780792367567
Category : Computers
Languages : en
Pages : 376
Book Description
A textbook for an undergraduate course in mathematical programming for students with a knowledge of elementary real analysis, linear algebra, and classical linear programming (simple techniques). Focuses on the computation and characterization of global optima of nonlinear functions, rather than the locally optimal solutions addressed by most books on optimization. Incorporates the theoretical, algorithmic, and computational advances of the past three decades that help solve globally multi-extreme problems in the mathematical modeling of real world systems. Annotation copyright by Book News, Inc., Portland, OR
Publisher: Springer Science & Business Media
ISBN: 9780792367567
Category : Computers
Languages : en
Pages : 376
Book Description
A textbook for an undergraduate course in mathematical programming for students with a knowledge of elementary real analysis, linear algebra, and classical linear programming (simple techniques). Focuses on the computation and characterization of global optima of nonlinear functions, rather than the locally optimal solutions addressed by most books on optimization. Incorporates the theoretical, algorithmic, and computational advances of the past three decades that help solve globally multi-extreme problems in the mathematical modeling of real world systems. Annotation copyright by Book News, Inc., Portland, OR
Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition
Author: Michel C. Delfour
Publisher: SIAM
ISBN: 1611975964
Category : Mathematics
Languages : en
Pages : 446
Book Description
This second edition provides an enhanced exposition of the long-overlooked Hadamard semidifferential calculus, first introduced in the 1920s by mathematicians Jacques Hadamard and Maurice René Fréchet. Hadamard semidifferential calculus is possibly the largest family of nondifferentiable functions that retains all the features of classical differential calculus, including the chain rule, making it a natural framework for initiating a large audience of undergraduates and non-mathematicians into the world of nondifferentiable optimization. Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition builds upon its prior editions foundations in Hadamard semidifferential calculus, showcasing new material linked to convex analysis and nonsmooth optimization. It presents a modern treatment of optimization and Hadamard semidifferential calculus while remaining at a level that is accessible to undergraduate students, and challenges students with exercises related to problems in such fields as engineering, mechanics, medicine, physics, and economics. Answers are supplied in Appendix B. Students of mathematics, physics, engineering, economics, and other disciplines that demand a basic knowledge of mathematical analysis and linear algebra will find this a fitting primary or companion resource for their studies. This textbook has been designed and tested for a one-term course at the undergraduate level. In its full version, it is appropriate for a first-year graduate course and as a reference.
Publisher: SIAM
ISBN: 1611975964
Category : Mathematics
Languages : en
Pages : 446
Book Description
This second edition provides an enhanced exposition of the long-overlooked Hadamard semidifferential calculus, first introduced in the 1920s by mathematicians Jacques Hadamard and Maurice René Fréchet. Hadamard semidifferential calculus is possibly the largest family of nondifferentiable functions that retains all the features of classical differential calculus, including the chain rule, making it a natural framework for initiating a large audience of undergraduates and non-mathematicians into the world of nondifferentiable optimization. Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition builds upon its prior editions foundations in Hadamard semidifferential calculus, showcasing new material linked to convex analysis and nonsmooth optimization. It presents a modern treatment of optimization and Hadamard semidifferential calculus while remaining at a level that is accessible to undergraduate students, and challenges students with exercises related to problems in such fields as engineering, mechanics, medicine, physics, and economics. Answers are supplied in Appendix B. Students of mathematics, physics, engineering, economics, and other disciplines that demand a basic knowledge of mathematical analysis and linear algebra will find this a fitting primary or companion resource for their studies. This textbook has been designed and tested for a one-term course at the undergraduate level. In its full version, it is appropriate for a first-year graduate course and as a reference.
Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming
Author: Mohit Tawarmalani
Publisher: Springer Science & Business Media
ISBN: 1475735324
Category : Mathematics
Languages : en
Pages : 492
Book Description
Interest in constrained optimization originated with the simple linear pro gramming model since it was practical and perhaps the only computationally tractable model at the time. Constrained linear optimization models were soon adopted in numerous application areas and are perhaps the most widely used mathematical models in operations research and management science at the time of this writing. Modelers have, however, found the assumption of linearity to be overly restrictive in expressing the real-world phenomena and problems in economics, finance, business, communication, engineering design, computational biology, and other areas that frequently demand the use of nonlinear expressions and discrete variables in optimization models. Both of these extensions of the linear programming model are NP-hard, thus representing very challenging problems. On the brighter side, recent advances in algorithmic and computing technology make it possible to re visit these problems with the hope of solving practically relevant problems in reasonable amounts of computational time. Initial attempts at solving nonlinear programs concentrated on the de velopment of local optimization methods guaranteeing globality under the assumption of convexity. On the other hand, the integer programming liter ature has concentrated on the development of methods that ensure global optima. The aim of this book is to marry the advancements in solving nonlinear and integer programming models and to develop new results in the more general framework of mixed-integer nonlinear programs (MINLPs) with the goal of devising practically efficient global optimization algorithms for MINLPs.
Publisher: Springer Science & Business Media
ISBN: 1475735324
Category : Mathematics
Languages : en
Pages : 492
Book Description
Interest in constrained optimization originated with the simple linear pro gramming model since it was practical and perhaps the only computationally tractable model at the time. Constrained linear optimization models were soon adopted in numerous application areas and are perhaps the most widely used mathematical models in operations research and management science at the time of this writing. Modelers have, however, found the assumption of linearity to be overly restrictive in expressing the real-world phenomena and problems in economics, finance, business, communication, engineering design, computational biology, and other areas that frequently demand the use of nonlinear expressions and discrete variables in optimization models. Both of these extensions of the linear programming model are NP-hard, thus representing very challenging problems. On the brighter side, recent advances in algorithmic and computing technology make it possible to re visit these problems with the hope of solving practically relevant problems in reasonable amounts of computational time. Initial attempts at solving nonlinear programs concentrated on the de velopment of local optimization methods guaranteeing globality under the assumption of convexity. On the other hand, the integer programming liter ature has concentrated on the development of methods that ensure global optima. The aim of this book is to marry the advancements in solving nonlinear and integer programming models and to develop new results in the more general framework of mixed-integer nonlinear programs (MINLPs) with the goal of devising practically efficient global optimization algorithms for MINLPs.
Linear Network Optimization
Author: Dimitri P. Bertsekas
Publisher: MIT Press
ISBN: 9780262023344
Category : Business & Economics
Languages : en
Pages : 384
Book Description
Linear Network Optimization presents a thorough treatment of classical approaches to network problems such as shortest path, max-flow, assignment, transportation, and minimum cost flow problems.
Publisher: MIT Press
ISBN: 9780262023344
Category : Business & Economics
Languages : en
Pages : 384
Book Description
Linear Network Optimization presents a thorough treatment of classical approaches to network problems such as shortest path, max-flow, assignment, transportation, and minimum cost flow problems.
An Introduction to Optimization
Author: Edwin K. P. Chong
Publisher: John Wiley & Sons
ISBN: 1118515153
Category : Mathematics
Languages : en
Pages : 646
Book Description
Praise for the Third Edition ". . . guides and leads the reader through the learning path . . . [e]xamples are stated very clearly and the results are presented with attention to detail." —MAA Reviews Fully updated to reflect new developments in the field, the Fourth Edition of Introduction to Optimization fills the need for accessible treatment of optimization theory and methods with an emphasis on engineering design. Basic definitions and notations are provided in addition to the related fundamental background for linear algebra, geometry, and calculus. This new edition explores the essential topics of unconstrained optimization problems, linear programming problems, and nonlinear constrained optimization. The authors also present an optimization perspective on global search methods and include discussions on genetic algorithms, particle swarm optimization, and the simulated annealing algorithm. Featuring an elementary introduction to artificial neural networks, convex optimization, and multi-objective optimization, the Fourth Edition also offers: A new chapter on integer programming Expanded coverage of one-dimensional methods Updated and expanded sections on linear matrix inequalities Numerous new exercises at the end of each chapter MATLAB exercises and drill problems to reinforce the discussed theory and algorithms Numerous diagrams and figures that complement the written presentation of key concepts MATLAB M-files for implementation of the discussed theory and algorithms (available via the book's website) Introduction to Optimization, Fourth Edition is an ideal textbook for courses on optimization theory and methods. In addition, the book is a useful reference for professionals in mathematics, operations research, electrical engineering, economics, statistics, and business.
Publisher: John Wiley & Sons
ISBN: 1118515153
Category : Mathematics
Languages : en
Pages : 646
Book Description
Praise for the Third Edition ". . . guides and leads the reader through the learning path . . . [e]xamples are stated very clearly and the results are presented with attention to detail." —MAA Reviews Fully updated to reflect new developments in the field, the Fourth Edition of Introduction to Optimization fills the need for accessible treatment of optimization theory and methods with an emphasis on engineering design. Basic definitions and notations are provided in addition to the related fundamental background for linear algebra, geometry, and calculus. This new edition explores the essential topics of unconstrained optimization problems, linear programming problems, and nonlinear constrained optimization. The authors also present an optimization perspective on global search methods and include discussions on genetic algorithms, particle swarm optimization, and the simulated annealing algorithm. Featuring an elementary introduction to artificial neural networks, convex optimization, and multi-objective optimization, the Fourth Edition also offers: A new chapter on integer programming Expanded coverage of one-dimensional methods Updated and expanded sections on linear matrix inequalities Numerous new exercises at the end of each chapter MATLAB exercises and drill problems to reinforce the discussed theory and algorithms Numerous diagrams and figures that complement the written presentation of key concepts MATLAB M-files for implementation of the discussed theory and algorithms (available via the book's website) Introduction to Optimization, Fourth Edition is an ideal textbook for courses on optimization theory and methods. In addition, the book is a useful reference for professionals in mathematics, operations research, electrical engineering, economics, statistics, and business.
Nonsmooth Vector Functions and Continuous Optimization
Author: V. Jeyakumar
Publisher: Springer Science & Business Media
ISBN: 0387737170
Category : Mathematics
Languages : en
Pages : 277
Book Description
Focusing on the study of nonsmooth vector functions, this book presents a comprehensive account of the calculus of generalized Jacobian matrices and their applications to continuous nonsmooth optimization problems, as well as variational inequalities in finite dimensions. The treatment is motivated by a desire to expose an elementary approach to nonsmooth calculus, using a set of matrices to replace the nonexistent Jacobian matrix of a continuous vector function.
Publisher: Springer Science & Business Media
ISBN: 0387737170
Category : Mathematics
Languages : en
Pages : 277
Book Description
Focusing on the study of nonsmooth vector functions, this book presents a comprehensive account of the calculus of generalized Jacobian matrices and their applications to continuous nonsmooth optimization problems, as well as variational inequalities in finite dimensions. The treatment is motivated by a desire to expose an elementary approach to nonsmooth calculus, using a set of matrices to replace the nonexistent Jacobian matrix of a continuous vector function.
Numerical Optimization
Author: Jorge Nocedal
Publisher: Springer Science & Business Media
ISBN: 0387400656
Category : Mathematics
Languages : en
Pages : 686
Book Description
Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.
Publisher: Springer Science & Business Media
ISBN: 0387400656
Category : Mathematics
Languages : en
Pages : 686
Book Description
Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.
Convex Analysis and Nonlinear Optimization
Author: Jonathan Borwein
Publisher: Springer Science & Business Media
ISBN: 0387312560
Category : Mathematics
Languages : en
Pages : 316
Book Description
Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.
Publisher: Springer Science & Business Media
ISBN: 0387312560
Category : Mathematics
Languages : en
Pages : 316
Book Description
Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.