Analysis of the Combustion Process of an Automotive Spark Ignition Engine with Exhaust Gas Recirculation

Analysis of the Combustion Process of an Automotive Spark Ignition Engine with Exhaust Gas Recirculation PDF Author: Philip H. Nusz
Publisher:
ISBN:
Category : Automobiles
Languages : en
Pages :

Get Book Here

Book Description

Analysis of the Combustion Process of an Automotive Spark Ignition Engine with Exhaust Gas Recirculation

Analysis of the Combustion Process of an Automotive Spark Ignition Engine with Exhaust Gas Recirculation PDF Author: Philip H. Nusz
Publisher:
ISBN:
Category : Automobiles
Languages : en
Pages :

Get Book Here

Book Description


Knocking in Gasoline Engines

Knocking in Gasoline Engines PDF Author: Michael Günther
Publisher: Springer
ISBN: 3319697609
Category : Technology & Engineering
Languages : en
Pages : 381

Get Book Here

Book Description
The book includes the papers presented at the conference discussing approaches to prevent or reliably control knocking and other irregular combustion events. The majority of today’s highly efficient gasoline engines utilize downsizing. High mean pressures produce increased knocking, which frequently results in a reduction in the compression ratio at high specific powers. Beyond this, the phenomenon of pre-ignition has been linked to the rise in specific power in gasoline engines for many years. Charge-diluted concepts with high compression cause extreme knocking, potentially leading to catastrophic failure. The introduction of RDE legislation this year will further grow the requirements for combustion process development, as residual gas scavenging and enrichment to improve the knock limit will be legally restricted despite no relaxation of the need to reach the main center of heat release as early as possible. New solutions in thermodynamics and control engineering are urgently needed to further increase the efficiency of gasoline engines.

Assessment of Fuel Economy Technologies for Light-Duty Vehicles

Assessment of Fuel Economy Technologies for Light-Duty Vehicles PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309216389
Category : Science
Languages : en
Pages : 373

Get Book Here

Book Description
Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.

The Study of Exhaust Gas Recirculation on Efficiency and NOx Emission in Spark Ignition Engine

The Study of Exhaust Gas Recirculation on Efficiency and NOx Emission in Spark Ignition Engine PDF Author: Janusz Przastek
Publisher:
ISBN:
Category : Automobiles
Languages : en
Pages : 16

Get Book Here

Book Description
"This paper presents electronically controlled ignition system with exhaust gas recirculation (EGR) in two-cylinder, four-stroke SI research engine. Exhaust gas recirculation was achieved by the special spark plugs enabling flow of exhaust gases between cylinders." -- Abstract.

Analysis of the Combustion Process of a Spark Ignition Engine with a Variable Compression Ratio

Analysis of the Combustion Process of a Spark Ignition Engine with a Variable Compression Ratio PDF Author:
Publisher:
ISBN:
Category : Spark ignition engines
Languages : en
Pages : 9

Get Book Here

Book Description


Effect of Fuel Composition on Exhaust Emissions from a Spark-ignition Engine

Effect of Fuel Composition on Exhaust Emissions from a Spark-ignition Engine PDF Author: Ralph David Fleming
Publisher:
ISBN:
Category : Automobiles
Languages : en
Pages : 76

Get Book Here

Book Description


The Autoignition Characteristics of Turbocharged Spark Ignition Engines with Exhaust Gas Recirculation

The Autoignition Characteristics of Turbocharged Spark Ignition Engines with Exhaust Gas Recirculation PDF Author: Jacob Elijah McKenzie
Publisher:
ISBN:
Category :
Languages : en
Pages : 145

Get Book Here

Book Description
The societal demand for vehicles with high efficiency and low emissions has spurred considerable changes to the automotive internal combustion engine within the past decade. Reductions in the displacement volume and increases in maximum output per unit of displacement are among the characteristics adopted to meet the fuel economy targets of world governments. However, the extent to which these changes in engine configuration may be pursued in search of efficiency is limited by several fundamental phenomena. The intent of this research project is to investigate the modeling of one of these phenomena - the autoignition of an unburned portion of the air-fuel mixture - and a potential strategy intended to delay the occurrence of this frequently damaging type of combustion reaction. The autoignition abatement approach studied entails the recirculation of burned exhaust gasses which serve to dilute the air-fuel mixture and reduce maximum unburned gas temperatures Experimental testing was performed on two different types of exhaust gas recirculation (EGR) system - one which extracts exhaust gases from upstream of the catalytic converter and another which extracts gases from downstream - in order to determine if the changes in composition that occur across the catalyst affect the autoignition abatement characteristics of the recirculated exhaust. This testing indicated that differences between the alternative installations are dominated by changes in the flow dynamics of the exhaust system, with no definite changes attributable to compositional differences. An empirical method of predicting the occurrence of autoignition using experimental data was then developed based on an approach originally proposed by Livengood and Wu. Ignition delay correlations were developed that provide accurate autoignition prediction over a range of speeds, loads, air-fuel equivalence ratios and dilution rates. Additionally, a new statistical model for autoignition is proposed that captures the cycle-to-cycle variation in autoignition intensity and relates these variations to the thermodynamic state of the charge.

Potential of Spark Ignition Engine

Potential of Spark Ignition Engine PDF Author: Thomas Trella
Publisher:
ISBN:
Category : Automobiles
Languages : en
Pages : 108

Get Book Here

Book Description


Automotive Spark-Ignited Direct-Injection Gasoline Engines

Automotive Spark-Ignited Direct-Injection Gasoline Engines PDF Author: F. Zhao
Publisher: Elsevier
ISBN: 008055279X
Category : Technology & Engineering
Languages : en
Pages : 129

Get Book Here

Book Description
The process of fuel injection, spray atomization and vaporization, charge cooling, mixture preparation and the control of in-cylinder air motion are all being actively researched and this work is reviewed in detail and analyzed. The new technologies such as high-pressure, common-rail, gasoline injection systems and swirl-atomizing gasoline fuel injections are discussed in detail, as these technologies, along with computer control capabilities, have enabled the current new examination of an old objective; the direct-injection, stratified-charge (DISC), gasoline engine. The prior work on DISC engines that is relevant to current GDI engine development is also reviewed and discussed. The fuel economy and emission data for actual engine configurations have been obtained and assembled for all of the available GDI literature, and are reviewed and discussed in detail. The types of GDI engines are arranged in four classifications of decreasing complexity, and the advantages and disadvantages of each class are noted and explained. Emphasis is placed upon consensus trends and conclusions that are evident when taken as a whole; thus the GDI researcher is informed regarding the degree to which engine volumetric efficiency and compression ratio can be increased under optimized conditions, and as to the extent to which unburned hydrocarbon (UBHC), NOx and particulate emissions can be minimized for specific combustion strategies. The critical area of GDI fuel injector deposits and the associated effect on spray geometry and engine performance degradation are reviewed, and important system guidelines for minimizing deposition rates and deposit effects are presented. The capabilities and limitations of emission control techniques and after treatment hardware are reviewed in depth, and a compilation and discussion of areas of consensus on attaining European, Japanese and North American emission standards presented. All known research, prototype and production GDI engines worldwide are reviewed as to performance, emissions and fuel economy advantages, and for areas requiring further development. The engine schematics, control diagrams and specifications are compiled, and the emission control strategies are illustrated and discussed. The influence of lean-NOx catalysts on the development of late-injection, stratified-charge GDI engines is reviewed, and the relative merits of lean-burn, homogeneous, direct-injection engines as an option requiring less control complexity are analyzed.

Mixture Formation in Spark-Ignition Engines

Mixture Formation in Spark-Ignition Engines PDF Author: Hans Peter Lenz
Publisher: Springer
ISBN: 148992762X
Category : Technology & Engineering
Languages : en
Pages : 417

Get Book Here

Book Description
Twentyfour years have gone by since the publication of K. Lohner and H. Muller's comprehen sive work "Gemischbildung und Verbrennung im Ottomotor" in 1967 [1.1]' Naturally, the field of mixture formation and combustion in the spark-ignition engine has wit nessed great technological advances and many new findings in the intervening years, so that the time seemed ripe for presenting a summary of recent research and developments. There fore, I gladly took up the suggestion of the editors of this series of books, Professor Dr. H. List and Professor Dr. A. Pischinger, to write a book summarizing the present state of the art. A center of activity of the Institute of Internal-Combustion Engines and Automotive Engineering at the Vienna Technical University, which I am heading, is the field of mixture formation -there fore, many new results that have been achieved in this area in collaboration with the respective industry have been included in this volume. The basic principles of combustion are discussed only to that extent which seemect necessary for an understanding of the effects of mixture formation. The focal point of this volume is the mixture formation in spark-ignition engines, covering both the theory and actual design of the mixture formation units and appropriate intake manifolds. Also, the related measurement technology is explained in this work.