Author: Yvonne Choquet-Bruhat
Publisher: Gulf Professional Publishing
ISBN: 9780444860170
Category : Mathematics
Languages : en
Pages : 666
Book Description
This reference book, which has found wide use as a text, provides an answer to the needs of graduate physical mathematics students and their teachers. The present edition is a thorough revision of the first, including a new chapter entitled ``Connections on Principle Fibre Bundles'' which includes sections on holonomy, characteristic classes, invariant curvature integrals and problems on the geometry of gauge fields, monopoles, instantons, spin structure and spin connections. Many paragraphs have been rewritten, and examples and exercises added to ease the study of several chapters. The index includes over 130 entries.
Analysis, Manifolds and Physics Revised Edition
Author: Yvonne Choquet-Bruhat
Publisher: Gulf Professional Publishing
ISBN: 9780444860170
Category : Mathematics
Languages : en
Pages : 666
Book Description
This reference book, which has found wide use as a text, provides an answer to the needs of graduate physical mathematics students and their teachers. The present edition is a thorough revision of the first, including a new chapter entitled ``Connections on Principle Fibre Bundles'' which includes sections on holonomy, characteristic classes, invariant curvature integrals and problems on the geometry of gauge fields, monopoles, instantons, spin structure and spin connections. Many paragraphs have been rewritten, and examples and exercises added to ease the study of several chapters. The index includes over 130 entries.
Publisher: Gulf Professional Publishing
ISBN: 9780444860170
Category : Mathematics
Languages : en
Pages : 666
Book Description
This reference book, which has found wide use as a text, provides an answer to the needs of graduate physical mathematics students and their teachers. The present edition is a thorough revision of the first, including a new chapter entitled ``Connections on Principle Fibre Bundles'' which includes sections on holonomy, characteristic classes, invariant curvature integrals and problems on the geometry of gauge fields, monopoles, instantons, spin structure and spin connections. Many paragraphs have been rewritten, and examples and exercises added to ease the study of several chapters. The index includes over 130 entries.
Manifolds, Tensor Analysis, and Applications
Author: Ralph Abraham
Publisher: Springer Science & Business Media
ISBN: 1461210291
Category : Mathematics
Languages : en
Pages : 666
Book Description
The purpose of this book is to provide core material in nonlinear analysis for mathematicians, physicists, engineers, and mathematical biologists. The main goal is to provide a working knowledge of manifolds, dynamical systems, tensors, and differential forms. Some applications to Hamiltonian mechanics, fluid me chanics, electromagnetism, plasma dynamics and control thcory arc given in Chapter 8, using both invariant and index notation. The current edition of the book does not deal with Riemannian geometry in much detail, and it does not treat Lie groups, principal bundles, or Morse theory. Some of this is planned for a subsequent edition. Meanwhile, the authors will make available to interested readers supplementary chapters on Lie Groups and Differential Topology and invite comments on the book's contents and development. Throughout the text supplementary topics are given, marked with the symbols ~ and {l:;J. This device enables the reader to skip various topics without disturbing the main flow of the text. Some of these provide additional background material intended for completeness, to minimize the necessity of consulting too many outside references. We treat finite and infinite-dimensional manifolds simultaneously. This is partly for efficiency of exposition. Without advanced applications, using manifolds of mappings, the study of infinite-dimensional manifolds can be hard to motivate.
Publisher: Springer Science & Business Media
ISBN: 1461210291
Category : Mathematics
Languages : en
Pages : 666
Book Description
The purpose of this book is to provide core material in nonlinear analysis for mathematicians, physicists, engineers, and mathematical biologists. The main goal is to provide a working knowledge of manifolds, dynamical systems, tensors, and differential forms. Some applications to Hamiltonian mechanics, fluid me chanics, electromagnetism, plasma dynamics and control thcory arc given in Chapter 8, using both invariant and index notation. The current edition of the book does not deal with Riemannian geometry in much detail, and it does not treat Lie groups, principal bundles, or Morse theory. Some of this is planned for a subsequent edition. Meanwhile, the authors will make available to interested readers supplementary chapters on Lie Groups and Differential Topology and invite comments on the book's contents and development. Throughout the text supplementary topics are given, marked with the symbols ~ and {l:;J. This device enables the reader to skip various topics without disturbing the main flow of the text. Some of these provide additional background material intended for completeness, to minimize the necessity of consulting too many outside references. We treat finite and infinite-dimensional manifolds simultaneously. This is partly for efficiency of exposition. Without advanced applications, using manifolds of mappings, the study of infinite-dimensional manifolds can be hard to motivate.
Analysis and Algebra on Differentiable Manifolds: A Workbook for Students and Teachers
Author: P.M. Gadea
Publisher: Springer Science & Business Media
ISBN: 9048135648
Category : Mathematics
Languages : en
Pages : 446
Book Description
A famous Swiss professor gave a student’s course in Basel on Riemann surfaces. After a couple of lectures, a student asked him, “Professor, you have as yet not given an exact de nition of a Riemann surface.” The professor answered, “With Riemann surfaces, the main thing is to UNDERSTAND them, not to de ne them.” The student’s objection was reasonable. From a formal viewpoint, it is of course necessary to start as soon as possible with strict de nitions, but the professor’s - swer also has a substantial background. The pure de nition of a Riemann surface— as a complex 1-dimensional complex analytic manifold—contributes little to a true understanding. It takes a long time to really be familiar with what a Riemann s- face is. This example is typical for the objects of global analysis—manifolds with str- tures. There are complex concrete de nitions but these do not automatically explain what they really are, what we can do with them, which operations they really admit, how rigid they are. Hence, there arises the natural question—how to attain a deeper understanding? One well-known way to gain an understanding is through underpinning the d- nitions, theorems and constructions with hierarchies of examples, counterexamples and exercises. Their choice, construction and logical order is for any teacher in global analysis an interesting, important and fun creating task.
Publisher: Springer Science & Business Media
ISBN: 9048135648
Category : Mathematics
Languages : en
Pages : 446
Book Description
A famous Swiss professor gave a student’s course in Basel on Riemann surfaces. After a couple of lectures, a student asked him, “Professor, you have as yet not given an exact de nition of a Riemann surface.” The professor answered, “With Riemann surfaces, the main thing is to UNDERSTAND them, not to de ne them.” The student’s objection was reasonable. From a formal viewpoint, it is of course necessary to start as soon as possible with strict de nitions, but the professor’s - swer also has a substantial background. The pure de nition of a Riemann surface— as a complex 1-dimensional complex analytic manifold—contributes little to a true understanding. It takes a long time to really be familiar with what a Riemann s- face is. This example is typical for the objects of global analysis—manifolds with str- tures. There are complex concrete de nitions but these do not automatically explain what they really are, what we can do with them, which operations they really admit, how rigid they are. Hence, there arises the natural question—how to attain a deeper understanding? One well-known way to gain an understanding is through underpinning the d- nitions, theorems and constructions with hierarchies of examples, counterexamples and exercises. Their choice, construction and logical order is for any teacher in global analysis an interesting, important and fun creating task.
Calculus on Manifolds
Author: Michael Spivak
Publisher: Westview Press
ISBN: 9780805390216
Category : Science
Languages : en
Pages : 164
Book Description
This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.
Publisher: Westview Press
ISBN: 9780805390216
Category : Science
Languages : en
Pages : 164
Book Description
This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.
Tensor Analysis on Manifolds
Author: Richard L. Bishop
Publisher: Courier Corporation
ISBN: 0486139239
Category : Mathematics
Languages : en
Pages : 290
Book Description
DIVProceeds from general to special, including chapters on vector analysis on manifolds and integration theory. /div
Publisher: Courier Corporation
ISBN: 0486139239
Category : Mathematics
Languages : en
Pages : 290
Book Description
DIVProceeds from general to special, including chapters on vector analysis on manifolds and integration theory. /div
Analysis, Manifolds and Physics, Part II - Revised and Enlarged Edition
Author: Y. Choquet-Bruhat
Publisher: Elsevier
ISBN: 0080527159
Category : Science
Languages : en
Pages : 559
Book Description
Twelve problems have been added to the first edition; four of them are supplements to problems in the first edition. The others deal with issues that have become important, since the first edition of Volume II, in recent developments of various areas of physics. All the problems have their foundations in volume 1 of the 2-Volume set Analysis, Manifolds and Physics. It would have been prohibitively expensive to insert the new problems at their respective places. They are grouped together at the end of this volume, their logical place is indicated by a number of parenthesis following the title.
Publisher: Elsevier
ISBN: 0080527159
Category : Science
Languages : en
Pages : 559
Book Description
Twelve problems have been added to the first edition; four of them are supplements to problems in the first edition. The others deal with issues that have become important, since the first edition of Volume II, in recent developments of various areas of physics. All the problems have their foundations in volume 1 of the 2-Volume set Analysis, Manifolds and Physics. It would have been prohibitively expensive to insert the new problems at their respective places. They are grouped together at the end of this volume, their logical place is indicated by a number of parenthesis following the title.
Tensors and Manifolds
Author: Robert Wasserman
Publisher: Oxford University Press, USA
ISBN: 9780198510598
Category : Language Arts & Disciplines
Languages : en
Pages : 468
Book Description
This book sets forth the basic principles of tensors and manifolds and describes how the mathematics underlies elegant geometrical models of classical mechanics, relativity and elementary particle physics.
Publisher: Oxford University Press, USA
ISBN: 9780198510598
Category : Language Arts & Disciplines
Languages : en
Pages : 468
Book Description
This book sets forth the basic principles of tensors and manifolds and describes how the mathematics underlies elegant geometrical models of classical mechanics, relativity and elementary particle physics.
Mathematical Physics
Author: Sadri Hassani
Publisher: Springer Science & Business Media
ISBN: 9780387985794
Category : Science
Languages : en
Pages : 1052
Book Description
For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.
Publisher: Springer Science & Business Media
ISBN: 9780387985794
Category : Science
Languages : en
Pages : 1052
Book Description
For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.
Differential Manifolds and Theoretical Physics
Author:
Publisher: Academic Press
ISBN: 0080874355
Category : Mathematics
Languages : en
Pages : 417
Book Description
Differential Manifolds and Theoretical Physics
Publisher: Academic Press
ISBN: 0080874355
Category : Mathematics
Languages : en
Pages : 417
Book Description
Differential Manifolds and Theoretical Physics
Some Applications of Functional Analysis in Mathematical Physics
Author: S. L. Sobolev
Publisher: American Mathematical Soc.
ISBN: 9780821898321
Category : Mathematics
Languages : fr
Pages : 300
Book Description
Special problems of functional analysis Variational methods in mathematical physics The theory of hyperbolic partial differential equations Comments Appendix: Methode nouvelle a resoudre le probleme de Cauchy pour les equations lineaires hyperboliques normales Comments on the appendix Bibliography Index
Publisher: American Mathematical Soc.
ISBN: 9780821898321
Category : Mathematics
Languages : fr
Pages : 300
Book Description
Special problems of functional analysis Variational methods in mathematical physics The theory of hyperbolic partial differential equations Comments Appendix: Methode nouvelle a resoudre le probleme de Cauchy pour les equations lineaires hyperboliques normales Comments on the appendix Bibliography Index