Author: Jacques Faraut
Publisher: Springer Science & Business Media
ISBN: 1461213665
Category : Mathematics
Languages : en
Pages : 539
Book Description
A number of important topics in complex analysis and geometry are covered in this excellent introductory text. Written by experts in the subject, each chapter unfolds from the basics to the more complex. The exposition is rapid-paced and efficient, without compromising proofs and examples that enable the reader to grasp the essentials. The most basic type of domain examined is the bounded symmetric domain, originally described and classified by Cartan and Harish- Chandra. Two of the five parts of the text deal with these domains: one introduces the subject through the theory of semisimple Lie algebras (Koranyi), and the other through Jordan algebras and triple systems (Roos). Larger classes of domains and spaces are furnished by the pseudo-Hermitian symmetric spaces and related R-spaces. These classes are covered via a study of their geometry and a presentation and classification of their Lie algebraic theory (Kaneyuki). In the fourth part of the book, the heat kernels of the symmetric spaces belonging to the classical Lie groups are determined (Lu). Explicit computations are made for each case, giving precise results and complementing the more abstract and general methods presented. Also explored are recent developments in the field, in particular, the study of complex semigroups which generalize complex tube domains and function spaces on them (Faraut). This volume will be useful as a graduate text for students of Lie group theory with connections to complex analysis, or as a self-study resource for newcomers to the field. Readers will reach the frontiers of the subject in a considerably shorter time than with existing texts.
Analysis and Geometry on Complex Homogeneous Domains
Author: Jacques Faraut
Publisher: Springer Science & Business Media
ISBN: 1461213665
Category : Mathematics
Languages : en
Pages : 539
Book Description
A number of important topics in complex analysis and geometry are covered in this excellent introductory text. Written by experts in the subject, each chapter unfolds from the basics to the more complex. The exposition is rapid-paced and efficient, without compromising proofs and examples that enable the reader to grasp the essentials. The most basic type of domain examined is the bounded symmetric domain, originally described and classified by Cartan and Harish- Chandra. Two of the five parts of the text deal with these domains: one introduces the subject through the theory of semisimple Lie algebras (Koranyi), and the other through Jordan algebras and triple systems (Roos). Larger classes of domains and spaces are furnished by the pseudo-Hermitian symmetric spaces and related R-spaces. These classes are covered via a study of their geometry and a presentation and classification of their Lie algebraic theory (Kaneyuki). In the fourth part of the book, the heat kernels of the symmetric spaces belonging to the classical Lie groups are determined (Lu). Explicit computations are made for each case, giving precise results and complementing the more abstract and general methods presented. Also explored are recent developments in the field, in particular, the study of complex semigroups which generalize complex tube domains and function spaces on them (Faraut). This volume will be useful as a graduate text for students of Lie group theory with connections to complex analysis, or as a self-study resource for newcomers to the field. Readers will reach the frontiers of the subject in a considerably shorter time than with existing texts.
Publisher: Springer Science & Business Media
ISBN: 1461213665
Category : Mathematics
Languages : en
Pages : 539
Book Description
A number of important topics in complex analysis and geometry are covered in this excellent introductory text. Written by experts in the subject, each chapter unfolds from the basics to the more complex. The exposition is rapid-paced and efficient, without compromising proofs and examples that enable the reader to grasp the essentials. The most basic type of domain examined is the bounded symmetric domain, originally described and classified by Cartan and Harish- Chandra. Two of the five parts of the text deal with these domains: one introduces the subject through the theory of semisimple Lie algebras (Koranyi), and the other through Jordan algebras and triple systems (Roos). Larger classes of domains and spaces are furnished by the pseudo-Hermitian symmetric spaces and related R-spaces. These classes are covered via a study of their geometry and a presentation and classification of their Lie algebraic theory (Kaneyuki). In the fourth part of the book, the heat kernels of the symmetric spaces belonging to the classical Lie groups are determined (Lu). Explicit computations are made for each case, giving precise results and complementing the more abstract and general methods presented. Also explored are recent developments in the field, in particular, the study of complex semigroups which generalize complex tube domains and function spaces on them (Faraut). This volume will be useful as a graduate text for students of Lie group theory with connections to complex analysis, or as a self-study resource for newcomers to the field. Readers will reach the frontiers of the subject in a considerably shorter time than with existing texts.
Analysis and Geometry on Complex Homogeneous Domains
Author: Jacques Faraut
Publisher:
ISBN: 9781461213673
Category :
Languages : en
Pages : 560
Book Description
Publisher:
ISBN: 9781461213673
Category :
Languages : en
Pages : 560
Book Description
Theory of Complex Homogeneous Bounded Domains
Author: Yichao Xu
Publisher: Springer Science & Business Media
ISBN: 140202133X
Category : Mathematics
Languages : en
Pages : 438
Book Description
This book is the first to systematically explore the classification and function theory of complex homogeneous bounded domains. The Siegel domains are discussed in detail, and proofs are presented. Using the normal Siegel domains to realize the homogeneous bounded domains, we can obtain more property of the geometry and the function theory on homogeneous bounded domains.
Publisher: Springer Science & Business Media
ISBN: 140202133X
Category : Mathematics
Languages : en
Pages : 438
Book Description
This book is the first to systematically explore the classification and function theory of complex homogeneous bounded domains. The Siegel domains are discussed in detail, and proofs are presented. Using the normal Siegel domains to realize the homogeneous bounded domains, we can obtain more property of the geometry and the function theory on homogeneous bounded domains.
Symmetries in Complex Analysis
Author: Bruce Gilligan
Publisher: American Mathematical Soc.
ISBN: 0821844598
Category : Mathematics
Languages : en
Pages : 242
Book Description
"The theme of this volume concerns interactions between group actions and problems in complex analysis." "The first four articles deal with such topics as representation kernels in representation theory, complex automorphisms and holomorphic equivalence of domains, and geometric description of exceptional symmetric domains. The last article is devoted to Seiberg-Witten equations and Taubes correspondence on symplectic 4-manifolds."--BOOK JACKET.
Publisher: American Mathematical Soc.
ISBN: 0821844598
Category : Mathematics
Languages : en
Pages : 242
Book Description
"The theme of this volume concerns interactions between group actions and problems in complex analysis." "The first four articles deal with such topics as representation kernels in representation theory, complex automorphisms and holomorphic equivalence of domains, and geometric description of exceptional symmetric domains. The last article is devoted to Seiberg-Witten equations and Taubes correspondence on symplectic 4-manifolds."--BOOK JACKET.
Complex Convexity and Analytic Functionals
Author: Mats Andersson
Publisher: Birkhäuser
ISBN: 3034878710
Category : Mathematics
Languages : en
Pages : 172
Book Description
This book puts the modern theory of complex linear convexity on a solid footing, and gives a thorough and up-to-date survey of its current status. Applications include the Fantappié transformation of analytic functionals, integral representation formulas, polynomial interpolation, and solutions to linear partial differential equations.
Publisher: Birkhäuser
ISBN: 3034878710
Category : Mathematics
Languages : en
Pages : 172
Book Description
This book puts the modern theory of complex linear convexity on a solid footing, and gives a thorough and up-to-date survey of its current status. Applications include the Fantappié transformation of analytic functionals, integral representation formulas, polynomial interpolation, and solutions to linear partial differential equations.
Geometric Analysis and Applications to Quantum Field Theory
Author: Peter Bouwknegt
Publisher: Springer Science & Business Media
ISBN: 1461200679
Category : Mathematics
Languages : en
Pages : 213
Book Description
In the last decade there has been an extraordinary confluence of ideas in mathematics and theoretical physics brought about by pioneering discoveries in geometry and analysis. The various chapters in this volume, treating the interface of geometric analysis and mathematical physics, represent current research interests. No suitable succinct account of the material is available elsewhere. Key topics include: * A self-contained derivation of the partition function of Chern- Simons gauge theory in the semiclassical approximation (D.H. Adams) * Algebraic and geometric aspects of the Knizhnik-Zamolodchikov equations in conformal field theory (P. Bouwknegt) * Application of the representation theory of loop groups to simple models in quantum field theory and to certain integrable systems (A.L. Carey and E. Langmann) * A study of variational methods in Hermitian geometry from the viewpoint of the critical points of action functionals together with physical backgrounds (A. Harris) * A review of monopoles in nonabelian gauge theories (M.K. Murray) * Exciting developments in quantum cohomology (Y. Ruan) * The physics origin of Seiberg-Witten equations in 4-manifold theory (S. Wu) Graduate students, mathematicians and mathematical physicists in the above-mentioned areas will benefit from the user-friendly introductory style of each chapter as well as the comprehensive bibliographies provided for each topic. Prerequisite knowledge is minimal since sufficient background material motivates each chapter.
Publisher: Springer Science & Business Media
ISBN: 1461200679
Category : Mathematics
Languages : en
Pages : 213
Book Description
In the last decade there has been an extraordinary confluence of ideas in mathematics and theoretical physics brought about by pioneering discoveries in geometry and analysis. The various chapters in this volume, treating the interface of geometric analysis and mathematical physics, represent current research interests. No suitable succinct account of the material is available elsewhere. Key topics include: * A self-contained derivation of the partition function of Chern- Simons gauge theory in the semiclassical approximation (D.H. Adams) * Algebraic and geometric aspects of the Knizhnik-Zamolodchikov equations in conformal field theory (P. Bouwknegt) * Application of the representation theory of loop groups to simple models in quantum field theory and to certain integrable systems (A.L. Carey and E. Langmann) * A study of variational methods in Hermitian geometry from the viewpoint of the critical points of action functionals together with physical backgrounds (A. Harris) * A review of monopoles in nonabelian gauge theories (M.K. Murray) * Exciting developments in quantum cohomology (Y. Ruan) * The physics origin of Seiberg-Witten equations in 4-manifold theory (S. Wu) Graduate students, mathematicians and mathematical physicists in the above-mentioned areas will benefit from the user-friendly introductory style of each chapter as well as the comprehensive bibliographies provided for each topic. Prerequisite knowledge is minimal since sufficient background material motivates each chapter.
Introduction to Vertex Operator Algebras and Their Representations
Author: James Lepowsky
Publisher: Springer Science & Business Media
ISBN: 0817681868
Category : Mathematics
Languages : en
Pages : 330
Book Description
* Introduces the fundamental theory of vertex operator algebras and its basic techniques and examples. * Begins with a detailed presentation of the theoretical foundations and proceeds to a range of applications. * Includes a number of new, original results and brings fresh perspective to important works of many other researchers in algebra, lie theory, representation theory, string theory, quantum field theory, and other areas of math and physics.
Publisher: Springer Science & Business Media
ISBN: 0817681868
Category : Mathematics
Languages : en
Pages : 330
Book Description
* Introduces the fundamental theory of vertex operator algebras and its basic techniques and examples. * Begins with a detailed presentation of the theoretical foundations and proceeds to a range of applications. * Includes a number of new, original results and brings fresh perspective to important works of many other researchers in algebra, lie theory, representation theory, string theory, quantum field theory, and other areas of math and physics.
Analysis, Probability, Applications, and Computation
Author: Karl‐Olof Lindahl
Publisher: Springer
ISBN: 3030044599
Category : Mathematics
Languages : en
Pages : 540
Book Description
This book is a collection of short papers from the 11th International ISAAC Congress 2017 in Växjö, Sweden. The papers, written by the best international experts, are devoted to recent results in mathematics with a focus on analysis. The volume provides to both specialists and non-specialists an excellent source of information on the current research in mathematical analysis and its various interdisciplinary applications.
Publisher: Springer
ISBN: 3030044599
Category : Mathematics
Languages : en
Pages : 540
Book Description
This book is a collection of short papers from the 11th International ISAAC Congress 2017 in Växjö, Sweden. The papers, written by the best international experts, are devoted to recent results in mathematics with a focus on analysis. The volume provides to both specialists and non-specialists an excellent source of information on the current research in mathematical analysis and its various interdisciplinary applications.
Combinatorial Algebraic Geometry
Author: Aldo Conca
Publisher: Springer
ISBN: 3319048708
Category : Mathematics
Languages : en
Pages : 245
Book Description
Combinatorics and Algebraic Geometry have enjoyed a fruitful interplay since the nineteenth century. Classical interactions include invariant theory, theta functions and enumerative geometry. The aim of this volume is to introduce recent developments in combinatorial algebraic geometry and to approach algebraic geometry with a view towards applications, such as tensor calculus and algebraic statistics. A common theme is the study of algebraic varieties endowed with a rich combinatorial structure. Relevant techniques include polyhedral geometry, free resolutions, multilinear algebra, projective duality and compactifications.
Publisher: Springer
ISBN: 3319048708
Category : Mathematics
Languages : en
Pages : 245
Book Description
Combinatorics and Algebraic Geometry have enjoyed a fruitful interplay since the nineteenth century. Classical interactions include invariant theory, theta functions and enumerative geometry. The aim of this volume is to introduce recent developments in combinatorial algebraic geometry and to approach algebraic geometry with a view towards applications, such as tensor calculus and algebraic statistics. A common theme is the study of algebraic varieties endowed with a rich combinatorial structure. Relevant techniques include polyhedral geometry, free resolutions, multilinear algebra, projective duality and compactifications.
Rigid Analytic Geometry and Its Applications
Author: Jean Fresnel
Publisher: Springer Science & Business Media
ISBN: 1461200415
Category : Mathematics
Languages : en
Pages : 303
Book Description
Rigid (analytic) spaces were invented to describe degenerations, reductions, and moduli of algebraic curves and abelian varieties. This work, a revised and greatly expanded new English edition of an earlier French text by the same authors, presents important new developments and applications of the theory of rigid analytic spaces to abelian varieties, "points of rigid spaces," étale cohomology, Drinfeld modular curves, and Monsky-Washnitzer cohomology. The exposition is concise, self-contained, rich in examples and exercises, and will serve as an excellent graduate-level text for the classroom or for self-study.
Publisher: Springer Science & Business Media
ISBN: 1461200415
Category : Mathematics
Languages : en
Pages : 303
Book Description
Rigid (analytic) spaces were invented to describe degenerations, reductions, and moduli of algebraic curves and abelian varieties. This work, a revised and greatly expanded new English edition of an earlier French text by the same authors, presents important new developments and applications of the theory of rigid analytic spaces to abelian varieties, "points of rigid spaces," étale cohomology, Drinfeld modular curves, and Monsky-Washnitzer cohomology. The exposition is concise, self-contained, rich in examples and exercises, and will serve as an excellent graduate-level text for the classroom or for self-study.