Author: Jocelyn I. Pritchard
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 22
Book Description
On of the problems facing the aircraft community is landing gear dynamics, especially shimmy and brake-induced vibration. Shimmy and brake-induced vibrations can lead to accidents due to excessive wear and shortened life of gear parts and contribute to pilot and passenger discomfort. To increase understanding of these problems, a literature survey was performed. The major focus is on work from the last ten years. Some older publications are included to understand the longevity of the problem and the background from earlier researchers. The literature survey includes analyses, testing, modeling, and simulation of aircraft landing gear; and experimental validation and characterization of shimmy and brake-induced vibration of aircraft landing gear. The paper presents an overview of the problem, background information, and a history of landing gear dynamics problems and solutions. Based on the survey an assessment and recommendations of the most critically needed enhancements to the state of the art will be presented. The status of Langley work contributing to this activity will be given.
An Overview of Landing Gear Dynamics
Author: Jocelyn I. Pritchard
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 22
Book Description
On of the problems facing the aircraft community is landing gear dynamics, especially shimmy and brake-induced vibration. Shimmy and brake-induced vibrations can lead to accidents due to excessive wear and shortened life of gear parts and contribute to pilot and passenger discomfort. To increase understanding of these problems, a literature survey was performed. The major focus is on work from the last ten years. Some older publications are included to understand the longevity of the problem and the background from earlier researchers. The literature survey includes analyses, testing, modeling, and simulation of aircraft landing gear; and experimental validation and characterization of shimmy and brake-induced vibration of aircraft landing gear. The paper presents an overview of the problem, background information, and a history of landing gear dynamics problems and solutions. Based on the survey an assessment and recommendations of the most critically needed enhancements to the state of the art will be presented. The status of Langley work contributing to this activity will be given.
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 22
Book Description
On of the problems facing the aircraft community is landing gear dynamics, especially shimmy and brake-induced vibration. Shimmy and brake-induced vibrations can lead to accidents due to excessive wear and shortened life of gear parts and contribute to pilot and passenger discomfort. To increase understanding of these problems, a literature survey was performed. The major focus is on work from the last ten years. Some older publications are included to understand the longevity of the problem and the background from earlier researchers. The literature survey includes analyses, testing, modeling, and simulation of aircraft landing gear; and experimental validation and characterization of shimmy and brake-induced vibration of aircraft landing gear. The paper presents an overview of the problem, background information, and a history of landing gear dynamics problems and solutions. Based on the survey an assessment and recommendations of the most critically needed enhancements to the state of the art will be presented. The status of Langley work contributing to this activity will be given.
An Overview of Landing Gear Dynamics
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721181285
Category :
Languages : en
Pages : 34
Book Description
One of the problems facing the aircraft community is landing gear dynamics, especially shimmy and brake-induced vibration. Shimmy and brake-induced vibrations can lead to accidents due to excessive wear and shortened life of gear parts and contribute to pilot and passenger discomfort. To increase understanding of these problems, a literature survey was performed. The major focus is on work from the last ten years. Some older publications are included to understand the longevity of the problem and the background from earlier researchers. The literature survey includes analyses, testing, modeling, and simulation of aircraft landing gear; and experimental validation and characterization of shimmy and brake-induced vibration of aircraft landing gear. The paper presents an overview of the problem, background information, and a history of landing gear dynamics problems and solutions. Based on the survey an assessment and recommendations of the most critically needed enhancements to the state of the art will be presented. The status of Langley work contributing to this activity will be given. Pritchard, Jocelyn I. Langley Research Center NASA/TM-1999-209143, NAS 1.15:209143, ARL-TR-1976, L-17840
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721181285
Category :
Languages : en
Pages : 34
Book Description
One of the problems facing the aircraft community is landing gear dynamics, especially shimmy and brake-induced vibration. Shimmy and brake-induced vibrations can lead to accidents due to excessive wear and shortened life of gear parts and contribute to pilot and passenger discomfort. To increase understanding of these problems, a literature survey was performed. The major focus is on work from the last ten years. Some older publications are included to understand the longevity of the problem and the background from earlier researchers. The literature survey includes analyses, testing, modeling, and simulation of aircraft landing gear; and experimental validation and characterization of shimmy and brake-induced vibration of aircraft landing gear. The paper presents an overview of the problem, background information, and a history of landing gear dynamics problems and solutions. Based on the survey an assessment and recommendations of the most critically needed enhancements to the state of the art will be presented. The status of Langley work contributing to this activity will be given. Pritchard, Jocelyn I. Langley Research Center NASA/TM-1999-209143, NAS 1.15:209143, ARL-TR-1976, L-17840
Aircraft Landing Gear Design
Author: Norman S. Currey
Publisher: AIAA
ISBN: 9781600860188
Category : Airplanes
Languages : en
Pages : 394
Book Description
This is the only book available today that covers military and commercial aircraft landing gear design. It is a comprehensive text that will lead students and engineers from the initial concepts of landing gear design through final detail design. The book provides a vital link in landing gear design technology from historical practices to modern design trends, and it considers the necessary airfield interface with landing gear design. The text is backed up by calculations, specifications, references, working examples.
Publisher: AIAA
ISBN: 9781600860188
Category : Airplanes
Languages : en
Pages : 394
Book Description
This is the only book available today that covers military and commercial aircraft landing gear design. It is a comprehensive text that will lead students and engineers from the initial concepts of landing gear design through final detail design. The book provides a vital link in landing gear design technology from historical practices to modern design trends, and it considers the necessary airfield interface with landing gear design. The text is backed up by calculations, specifications, references, working examples.
The Design of Aircraft Landing Gear
Author: Robert Kyle Schmidt
Publisher: SAE International
ISBN: 0768099420
Category : Technology & Engineering
Languages : en
Pages : 1092
Book Description
The aircraft landing gear and its associated systems represent a compelling design challenge: simultaneously a system, a structure, and a machine, it supports the aircraft on the ground, absorbs landing and braking energy, permits maneuvering, and retracts to minimize aircraft drag. Yet, as it is not required during flight, it also represents dead weight and significant effort must be made to minimize its total mass. The Design of Aircraft Landing Gear, written by R. Kyle Schmidt, PE (B.A.Sc. - Mechanical Engineering, M.Sc. - Safety and Aircraft Accident Investigation, Chairman of the SAE A-5 Committee on Aircraft Landing Gear), is designed to guide the reader through the key principles of landing system design and to provide additional references when available. Many problems which must be confronted have already been addressed by others in the past, but the information is not known or shared, leading to the observation that there are few new problems, but many new people. The Design of Aircraft Landing Gear is intended to share much of the existing information and provide avenues for further exploration. The design of an aircraft and its associated systems, including the landing system, involves iterative loops as the impact of each modification to a system or component is evaluated against the whole. It is rare to find that the lightest possible landing gear represents the best solution for the aircraft: the lightest landing gear may require attachment structures which don't exist and which would require significant weight and compromise on the part of the airframe structure design. With those requirements and compromises in mind,The Design of Aircraft Landing Gear starts with the study of airfield compatibility, aircraft stability on the ground, the correct choice of tires, followed by discussion of brakes, wheels, and brake control systems. Various landing gear architectures are investigated together with the details of shock absorber designs. Retraction, kinematics, and mechanisms are studied as well as possible actuation approaches. Detailed information on the various hydraulic and electric services commonly found on aircraft, and system elements such as dressings, lighting, and steering are also reviewed. Detail design points, the process of analysis, and a review of the relevant requirements and regulations round out the book content. The Design of Aircraft Landing Gear is a landmark work in the industry, and a must-read for any engineer interested in updating specific skills and students preparing for an exciting career.
Publisher: SAE International
ISBN: 0768099420
Category : Technology & Engineering
Languages : en
Pages : 1092
Book Description
The aircraft landing gear and its associated systems represent a compelling design challenge: simultaneously a system, a structure, and a machine, it supports the aircraft on the ground, absorbs landing and braking energy, permits maneuvering, and retracts to minimize aircraft drag. Yet, as it is not required during flight, it also represents dead weight and significant effort must be made to minimize its total mass. The Design of Aircraft Landing Gear, written by R. Kyle Schmidt, PE (B.A.Sc. - Mechanical Engineering, M.Sc. - Safety and Aircraft Accident Investigation, Chairman of the SAE A-5 Committee on Aircraft Landing Gear), is designed to guide the reader through the key principles of landing system design and to provide additional references when available. Many problems which must be confronted have already been addressed by others in the past, but the information is not known or shared, leading to the observation that there are few new problems, but many new people. The Design of Aircraft Landing Gear is intended to share much of the existing information and provide avenues for further exploration. The design of an aircraft and its associated systems, including the landing system, involves iterative loops as the impact of each modification to a system or component is evaluated against the whole. It is rare to find that the lightest possible landing gear represents the best solution for the aircraft: the lightest landing gear may require attachment structures which don't exist and which would require significant weight and compromise on the part of the airframe structure design. With those requirements and compromises in mind,The Design of Aircraft Landing Gear starts with the study of airfield compatibility, aircraft stability on the ground, the correct choice of tires, followed by discussion of brakes, wheels, and brake control systems. Various landing gear architectures are investigated together with the details of shock absorber designs. Retraction, kinematics, and mechanisms are studied as well as possible actuation approaches. Detailed information on the various hydraulic and electric services commonly found on aircraft, and system elements such as dressings, lighting, and steering are also reviewed. Detail design points, the process of analysis, and a review of the relevant requirements and regulations round out the book content. The Design of Aircraft Landing Gear is a landmark work in the industry, and a must-read for any engineer interested in updating specific skills and students preparing for an exciting career.
A Study of Analytic Modeling Techniques for Landing Gear Dynamics
Author:
Publisher:
ISBN:
Category : Aircraft
Languages : en
Pages : 86
Book Description
The ability to accurately predict the dynamic response of an aircraft while it is operating in the taxi mode depends, in part on the correct modeling of the dynamic characteristics of the landing gear system. Traditionally, landing gear have been designed to absorb landing impact ('shock absorber') and their characteristics during periodic, oscillatory response ('spring') have been considered as secondary. With the increased emphasis on the rough or damaged field taxi operation, there is a requirement to determine the best methods for modeling the gear system. This report documents a brief review of the state of the art of gear modeling. A study was then conducted to evaluate important model parameters, using a simple cantilevered gear computer simulation. Also included is the development of a technique for the experimental determination of important gear system parameters. (Author).
Publisher:
ISBN:
Category : Aircraft
Languages : en
Pages : 86
Book Description
The ability to accurately predict the dynamic response of an aircraft while it is operating in the taxi mode depends, in part on the correct modeling of the dynamic characteristics of the landing gear system. Traditionally, landing gear have been designed to absorb landing impact ('shock absorber') and their characteristics during periodic, oscillatory response ('spring') have been considered as secondary. With the increased emphasis on the rough or damaged field taxi operation, there is a requirement to determine the best methods for modeling the gear system. This report documents a brief review of the state of the art of gear modeling. A study was then conducted to evaluate important model parameters, using a simple cantilevered gear computer simulation. Also included is the development of a technique for the experimental determination of important gear system parameters. (Author).
Introduction to Aircraft Flight Mechanics
Author: Thomas R. Yechout
Publisher: AIAA
ISBN: 9781600860782
Category : Aerodynamics
Languages : en
Pages : 666
Book Description
Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.
Publisher: AIAA
ISBN: 9781600860782
Category : Aerodynamics
Languages : en
Pages : 666
Book Description
Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.
A Method for Landing Gear Modeling and Simulation with Experimental Validation
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722136291
Category :
Languages : en
Pages : 100
Book Description
This document presents an approach for modeling and simulating landing gear systems. Specifically, a nonlinear model of an A-6 Intruder Main Gear is developed, simulated, and validated against static and dynamic test data. This model includes nonlinear effects such as a polytropic gas model, velocity squared damping, a geometry governed model for the discharge coefficients, stick-slip friction effects and a nonlinear tire spring and damping model. An Adams-Moulton predictor corrector was used to integrate the equations of motion until a discontinuity caused by a stick-slip friction model was reached, at which point, a Runga-Kutta routine integrated past the discontinuity and returned the problem solution back to the predictor corrector. Run times of this software are around 2 mins. per 1 sec. of simulation under dynamic circumstances. To validate the model, engineers at the Aircraft Landing Dynamics facilities at NASA Langley Research Center installed one A-6 main gear on a drop carriage and used a hydraulic shaker table to provide simulated runway inputs to the gear. Model parameters were tuned to produce excellent agreement for many cases. Daniels, James N. Langley Research Center...
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722136291
Category :
Languages : en
Pages : 100
Book Description
This document presents an approach for modeling and simulating landing gear systems. Specifically, a nonlinear model of an A-6 Intruder Main Gear is developed, simulated, and validated against static and dynamic test data. This model includes nonlinear effects such as a polytropic gas model, velocity squared damping, a geometry governed model for the discharge coefficients, stick-slip friction effects and a nonlinear tire spring and damping model. An Adams-Moulton predictor corrector was used to integrate the equations of motion until a discontinuity caused by a stick-slip friction model was reached, at which point, a Runga-Kutta routine integrated past the discontinuity and returned the problem solution back to the predictor corrector. Run times of this software are around 2 mins. per 1 sec. of simulation under dynamic circumstances. To validate the model, engineers at the Aircraft Landing Dynamics facilities at NASA Langley Research Center installed one A-6 main gear on a drop carriage and used a hydraulic shaker table to provide simulated runway inputs to the gear. Model parameters were tuned to produce excellent agreement for many cases. Daniels, James N. Langley Research Center...
Machines, Mechanism and Robotics
Author: D N Badodkar
Publisher: Springer
ISBN: 9811085978
Category : Computers
Languages : en
Pages : 841
Book Description
This book offers a collection of original peer-reviewed contributions presented at the 3rd International and 18th National Conference on Machines and Mechanisms (iNaCoMM), organized by Division of Remote Handling & Robotics, Bhabha Atomic Research Centre, Mumbai, India, from December 13th to 15th, 2017 (iNaCoMM 2017). It reports on various theoretical and practical features of machines, mechanisms and robotics; the contributions include carefully selected, novel ideas on and approaches to design, analysis, prototype development, assessment and surveys. Applications in machine and mechanism engineering, serial and parallel manipulators, power reactor engineering, autonomous vehicles, engineering in medicine, image-based data analytics, compliant mechanisms, and safety mechanisms are covered. Further papers provide in-depth analyses of data preparation, isolation and brain segmentation for focused visualization and robot-based neurosurgery, new approaches to parallel mechanism-based Master-Slave manipulators, solutions to forward kinematic problems, and surveys and optimizations based on historical and contemporary compliant mechanism-based design. The spectrum of contributions on theory and practice reveals central trends and newer branches of research in connection with these topics.
Publisher: Springer
ISBN: 9811085978
Category : Computers
Languages : en
Pages : 841
Book Description
This book offers a collection of original peer-reviewed contributions presented at the 3rd International and 18th National Conference on Machines and Mechanisms (iNaCoMM), organized by Division of Remote Handling & Robotics, Bhabha Atomic Research Centre, Mumbai, India, from December 13th to 15th, 2017 (iNaCoMM 2017). It reports on various theoretical and practical features of machines, mechanisms and robotics; the contributions include carefully selected, novel ideas on and approaches to design, analysis, prototype development, assessment and surveys. Applications in machine and mechanism engineering, serial and parallel manipulators, power reactor engineering, autonomous vehicles, engineering in medicine, image-based data analytics, compliant mechanisms, and safety mechanisms are covered. Further papers provide in-depth analyses of data preparation, isolation and brain segmentation for focused visualization and robot-based neurosurgery, new approaches to parallel mechanism-based Master-Slave manipulators, solutions to forward kinematic problems, and surveys and optimizations based on historical and contemporary compliant mechanism-based design. The spectrum of contributions on theory and practice reveals central trends and newer branches of research in connection with these topics.
Aircraft Dynamics and Automatic Control
Author: Duane T. McRuer
Publisher: Princeton University Press
ISBN: 1400855985
Category : Technology & Engineering
Languages : en
Pages : 809
Book Description
Aeronautical engineers concerned with the analysis of aircraft dynamics and the synthesis of aircraft flight control systems will find an indispensable tool in this analytical treatment of the subject. Approaching these two fields with the conviction that an understanding of either one can illuminate the other, the authors have summarized selected, interconnected techniques that facilitate a high level of insight into the essence of complex systems problems. These techniques are suitable for establishing nominal system designs, for forecasting off-nominal problems, and for diagnosing the root causes of problems that almost inevitably occur in the design process. A complete and self-contained work, the text discusses the early history of aircraft dynamics and control, mathematical models of linear system elements, feedback system analysis, vehicle equations of motion, longitudinal and lateral dynamics, and elementary longitudinal and lateral feedback control. The discussion concludes with such topics as the system design process, inputs and system performance assessment, and multi-loop flight control systems. Originally published in 1974. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Publisher: Princeton University Press
ISBN: 1400855985
Category : Technology & Engineering
Languages : en
Pages : 809
Book Description
Aeronautical engineers concerned with the analysis of aircraft dynamics and the synthesis of aircraft flight control systems will find an indispensable tool in this analytical treatment of the subject. Approaching these two fields with the conviction that an understanding of either one can illuminate the other, the authors have summarized selected, interconnected techniques that facilitate a high level of insight into the essence of complex systems problems. These techniques are suitable for establishing nominal system designs, for forecasting off-nominal problems, and for diagnosing the root causes of problems that almost inevitably occur in the design process. A complete and self-contained work, the text discusses the early history of aircraft dynamics and control, mathematical models of linear system elements, feedback system analysis, vehicle equations of motion, longitudinal and lateral dynamics, and elementary longitudinal and lateral feedback control. The discussion concludes with such topics as the system design process, inputs and system performance assessment, and multi-loop flight control systems. Originally published in 1974. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Tire and Vehicle Dynamics
Author: Hans Pacejka
Publisher: Elsevier
ISBN: 0080970176
Category : Technology & Engineering
Languages : en
Pages : 649
Book Description
The definitive book on tire mechanics by the acknowledged world expert - Covers everything you need to know about pneumatic tires and their impact on vehicle performance, including mathematic modeling and its practical application - Written by the acknowledged world authority on the topic and the name behind the most widely used model, Pacejka's 'Magic Formula' - Updated with the latest information on new and evolving tire models to ensure you can select the right model for your needs, apply it appropriately and understand its limitations In this well-known resource, leading tire model expert Hans Pacejka explains the relationship between operational variables, vehicle variables and tire modeling, taking you on a journey through the effective modeling of complex tire and vehicle dynamics problems. Covering the latest developments to Pacejka's own industry-leading model as well as the widely-used models of other pioneers in the field, the book combines theory, guidance, discussion and insight in one comprehensive reference. While the details of individual tire models are available in technical papers published by SAE, FISITA and other automotive organizations, Tire and Vehicle Dynamics remains the only reliable collection of information on the topic and the standard go-to resource for any engineer or researcher working in the area. - New edition of the definitive book on tire mechanics, by the acknowledged world authority on the topic - Covers everything an automotive engineer needs to know about pneumatic tires and their impact on vehicle performance, including mathematic modelling and its practical application - Most vehicle manufacturers use what is commonly known as Pacejka's 'Magic Formula', the tire model developed and presented in this book
Publisher: Elsevier
ISBN: 0080970176
Category : Technology & Engineering
Languages : en
Pages : 649
Book Description
The definitive book on tire mechanics by the acknowledged world expert - Covers everything you need to know about pneumatic tires and their impact on vehicle performance, including mathematic modeling and its practical application - Written by the acknowledged world authority on the topic and the name behind the most widely used model, Pacejka's 'Magic Formula' - Updated with the latest information on new and evolving tire models to ensure you can select the right model for your needs, apply it appropriately and understand its limitations In this well-known resource, leading tire model expert Hans Pacejka explains the relationship between operational variables, vehicle variables and tire modeling, taking you on a journey through the effective modeling of complex tire and vehicle dynamics problems. Covering the latest developments to Pacejka's own industry-leading model as well as the widely-used models of other pioneers in the field, the book combines theory, guidance, discussion and insight in one comprehensive reference. While the details of individual tire models are available in technical papers published by SAE, FISITA and other automotive organizations, Tire and Vehicle Dynamics remains the only reliable collection of information on the topic and the standard go-to resource for any engineer or researcher working in the area. - New edition of the definitive book on tire mechanics, by the acknowledged world authority on the topic - Covers everything an automotive engineer needs to know about pneumatic tires and their impact on vehicle performance, including mathematic modelling and its practical application - Most vehicle manufacturers use what is commonly known as Pacejka's 'Magic Formula', the tire model developed and presented in this book