An Investigation of Redox-active Isoindoline-based Ligands and Their Coordination Complexes

An Investigation of Redox-active Isoindoline-based Ligands and Their Coordination Complexes PDF Author: Edwin Wing Yip Wong
Publisher:
ISBN:
Category : Ligands
Languages : en
Pages : 0

Get Book Here

Book Description
The structural and electronic properties of metal complexes with isoindoline-based redox-active ligands and the ability of these ligands to stabilize unusual oxidation states was investigated. Two types of redox-active ligands were examined: phthalocyanines (Pc) and bis(2-pyridylimino)isoindolines also known as lobsterates (Lb). In contrast to the ancillary or spectator ligands more commonly used in coordination chemistry, redox-active ligands can exist in a range of oxidation states. Additionally, the chemical inertness of the Pc ligand could be used to develop new catalysts where the Pc ligand can stabilize a highly reactive metal centre and also act as an electron reservoir in a catalytic cycle. With this in mind, the reduction of trichloro(phthalocyanato)niobium(V) was performed with various reducing agents in order to study the bond activating ability of the reduced species and to determine the crystal structure of the reduced products. C-O bond activation of ether-type solvents suggests that the Pc ligand is able to withstand bond activation from a highly reduced niobium centre while, at the same time, allowing the niobium centre to activate the C-O bonds of the solvent. NbPc complexes containing Pc(4- ) ligands were structurally characterized. A reduced MgPc complex containing a Pc(3- ) ligand was also structurally characterized. A report of gold(II) Pc and the ability of Pc to stabilize gold in an unusual, paramagnetic +2 oxidation state was re-investigated. Attempts to synthesize soluble versions of AuPc as well as the original AuPc did not produce the desired gold(II) products and only diamagnetic gold(III) Pcs were obtained. An unprecedented, ring- contracted gold(III) Pc analogue was discovered and structurally characterized in the process of these studies. A series of three new 5,6-substituted Lb ligands were synthesized and the redox properties of these ligands in copper(II) acetate complexes were evaluated using cyclic voltammetry. The reductions of the copper acetate Lb complexes were not chemically reversible. The 2,6-diisopropylphenoxy-substituted Lb copper acetate complexes formed acetate-bridged 1-D chains. Superconducting quantum interference device magnetometry suggests that the Cu centres are very weakly antiferromagnetically coupled.

An Investigation of Redox-active Isoindoline-based Ligands and Their Coordination Complexes

An Investigation of Redox-active Isoindoline-based Ligands and Their Coordination Complexes PDF Author: Edwin Wing Yip Wong
Publisher:
ISBN:
Category : Ligands
Languages : en
Pages : 0

Get Book Here

Book Description
The structural and electronic properties of metal complexes with isoindoline-based redox-active ligands and the ability of these ligands to stabilize unusual oxidation states was investigated. Two types of redox-active ligands were examined: phthalocyanines (Pc) and bis(2-pyridylimino)isoindolines also known as lobsterates (Lb). In contrast to the ancillary or spectator ligands more commonly used in coordination chemistry, redox-active ligands can exist in a range of oxidation states. Additionally, the chemical inertness of the Pc ligand could be used to develop new catalysts where the Pc ligand can stabilize a highly reactive metal centre and also act as an electron reservoir in a catalytic cycle. With this in mind, the reduction of trichloro(phthalocyanato)niobium(V) was performed with various reducing agents in order to study the bond activating ability of the reduced species and to determine the crystal structure of the reduced products. C-O bond activation of ether-type solvents suggests that the Pc ligand is able to withstand bond activation from a highly reduced niobium centre while, at the same time, allowing the niobium centre to activate the C-O bonds of the solvent. NbPc complexes containing Pc(4- ) ligands were structurally characterized. A reduced MgPc complex containing a Pc(3- ) ligand was also structurally characterized. A report of gold(II) Pc and the ability of Pc to stabilize gold in an unusual, paramagnetic +2 oxidation state was re-investigated. Attempts to synthesize soluble versions of AuPc as well as the original AuPc did not produce the desired gold(II) products and only diamagnetic gold(III) Pcs were obtained. An unprecedented, ring- contracted gold(III) Pc analogue was discovered and structurally characterized in the process of these studies. A series of three new 5,6-substituted Lb ligands were synthesized and the redox properties of these ligands in copper(II) acetate complexes were evaluated using cyclic voltammetry. The reductions of the copper acetate Lb complexes were not chemically reversible. The 2,6-diisopropylphenoxy-substituted Lb copper acetate complexes formed acetate-bridged 1-D chains. Superconducting quantum interference device magnetometry suggests that the Cu centres are very weakly antiferromagnetically coupled.

Redox-Active Ligands

Redox-Active Ligands PDF Author: Marine Desage-El Murr
Publisher: John Wiley & Sons
ISBN: 3527348506
Category : Science
Languages : en
Pages : 373

Get Book Here

Book Description
Redox-Active Ligands Authoritative resource showcasing a new family of ligands that can lead to better catalysts and promising applications in organic synthesis Redox-Active Ligands gives a comprehensive overview of the unique features of redox-active ligands, describing their structure and synthesis, the characterization of their coordination complexes, and important applications in homogeneous catalysis. The work reflects the diversity of the subject by including ongoing research spanning coordination chemistry, organometallic chemistry, bioinspired catalysis, proton and electron transfer, and the ability of such ligands to interact with early and late transition metals, lanthanides, and actinides. The book is divided into three parts, devoted to introduction and concepts, applications, and case studies. After the introduction on key concepts related to the field, and the different types of ligands and complexes in which ligand-centered redox activity is commonly observed, mechanistic and computational studies are described. The second part focuses on catalytic applications of redox-active complexes, including examples from radical transformations, coordination chemistry and organic synthesis. Finally, case studies of redox-active guanidine ligands, and of lanthanides and actinides are presented. Other specific sample topics covered include: An overview of the electronic features of redox-active ligands, covering their historical perspective and biological background The versatility and mode of action of redox-active ligands, which sets them apart from more classic and tunable ligands such as phosphines or N-heterocyclic carbenes Preparation and catalytic applications of complexes of stable N-aryl radicals Metal complexes with redox-active ligands in H+/e- transfer transformations By providing up-to-date information on important concepts and applications, Redox-Active Ligands is an essential reading for researchers working in organometallic and coordination chemistry, catalysis, organic synthesis, and (bio)inorganic chemistry, as well as newcomers to the field.

The Age of Noninnocence

The Age of Noninnocence PDF Author: Seth N. Brown
Publisher: Wiley
ISBN: 9781118646854
Category : Science
Languages : en
Pages : 368

Get Book Here

Book Description
This book presents a comprehensive introduction to the unique and fundamental features of redox-active ligands, the preparation and characterization of their coordination complexes, and finally the importance of this class of molecules to biology, catalysis and materials. The book aims to provide a broadly accessible introduction to the particular features and opportunities unique to redox-active ligands. It begins with an introduction to the intellectual challenges posed by redox-active ligands and descriptions of the types of ligands and complexes in which ligand-centered redox activity are commonly observed. Following this, the book is divided into two sections as follows: The first section focuses on electronic structure and bonding, which has historically dominated this field and continues to be actively researched. The spectroscopic and other physical measurements that have been used to elucidate the electronic structure of these compounds are described. The interplay between synthesis, bonding models, and physical measurements has often been critical in shaping our understanding of these compounds. This interplay is illustrated by a number of case studies. The second section focuses on the use of redox-active complexes in stoichiometric and catalytic reactions. The scope of known reactions is presented, including examples from bioinorganic chemistry (both enzymes and model compounds). Where possible, the significance of the redox-active ligand is discussed, with an eye both to summarizing existing knowledge and pointing out possibilities for future research. This book explains the underpinnings of physical and theoretical techniques of redox-active ligands, providing up to date information on definitions, scope and applications for research scientists and graduate students working in organic and inorganic chemistry, organometallics and coordination chemistry.

Reactions at Coordinated Ligands: Redox-active Ligands and Coordination of Lewis Acids

Reactions at Coordinated Ligands: Redox-active Ligands and Coordination of Lewis Acids PDF Author: Mark R. Ringenberg
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The theme of this study is reactivity at the ligand and how remote, relative to the metal, activation affects the metal center. The three approaches were the use of redox-active ligands, ligand protonation and Lewis acid coordination to ligands. The focus is on ligand design rather than substrate or metal optimization with a primary interest in reactivity with dihydrogen. The main thrust of the work has been the investigation of redox-active ligands in which redox occurs at the ligand. Redox-active ligands have been generally a curiosity in organometallic chemistry and have only recently been realized in catalysis. Presented here is one of the first examples of a system that incorporates redox-active ligands as a critical component to the catalysts. The complexes utilizing redox-active ligands became Lewis acidic upon oxidation, similar in behavior to the Noyori type catalyst that became Lewis acidic upon protonation. The catalysts containing redox-active ligand were used for the oxidation of H2. The interest in H2 oxidation is the hope that it will fulfill the need for a new fuel source. This interest has lead to the development of soluble catalyst that can oxidize H2 to protons and electrons, in order to further study the mechanism. Redox-active ligands have lower reorganizational barriers because redox at organic substituents are typically lower than for inorganic centers. Furthermore, redox-active ligands can supplement the electrons/holes transferred from the metal, which can facilitate reactions that require multi-electron transfers. The next theme was the use of borane Lewis acids bound to a coordinated ligand, which dramatically changed the ligands from a donor to an acceptor. This type of reaction at the ligand fundamentally changes the reactivity at the metal, however, the affects are not as dramatic as say substituting the ligand. A largh enough change in ligand polarity can affect oxidation-state at the metal. The oxidation state of a metal becomes very difficult to assign when multiple electronic structures exist between the metal and the ligand. In fact in many ways the concept of metal oxidation state becomes meaningless as the electronic structure of the ligand becomes more complicated. These subtler changes in ligand oxidation state and the affects they have on reactivity at metal have not been as widely explored in catalysis. Remote activation of a metal center through reacts at coordinated ligands will be explored here in. The coordination of boranes to cyanide ligands is well know, however, this theme has not been applied to hydrogenase models. Cyanide is an essential component of the [FeFe]- and [NiFe]-hydrogenase active sites, both enzymes feature two cyanide ligands, however, models using cyanides ligands are plagued by undesirable side reactions such as metal-cyanide bridged polymers and decomposition. The bound boranes are used to simulate the hydrogen bonding found in the enzymes. The complexation of Lewis acids to cyanides offers an advantage over alkylation, in that the inductive affect of the borane can be tuned to better approximate the correct level of hydrogen bonding found in the enzyme.

Synthesis, Reactivity, and Multi-electron Redox Behavior of a Bis(phenoxy)amide Ligand Coordinated to a Tantalum Metal Center

Synthesis, Reactivity, and Multi-electron Redox Behavior of a Bis(phenoxy)amide Ligand Coordinated to a Tantalum Metal Center PDF Author: Ryan A. Zarkesh
Publisher:
ISBN: 9781267171108
Category :
Languages : en
Pages : 150

Get Book Here

Book Description
This dissertation describes the synthesis and reactivity of tantalum metal complexes containing a tridentate redox-active ligand. Fundamental studies have focused on utilizing the redox-active ligand to store multiple electron equivalents for oxidative addition and reductive elimination reactions. Chapter 1 provides an introduction to the characteristics of redox-active ligands and provides an overview of group transfer reactions involving redox-active ligands. The previous published results of bidentate redox-active ligands coordinated to Group IV d0 metals are discussed in terms of their decomposition side reactions. Chapter 2 describes the coordination of a known tridentate redox-active bis(phenoxy)amide ligand, (ONO), to a d0 tantalum(V) metal center and the examination of the redox properties of the resulting chloro oxidation products by electrochemical and spectroscopic methods. Chapter 3 examines the reactivity of the (ONO)TaR2 complexes in the general context of organometallic chemistry with a focus on protonolysis and reactivity with aryl azides, a known source of nitrene fragments upon oxidation. Chapter 4 examines the reactivity of the (ONO)TaX2 (X = Me, Cl) compounds with bulky diazoalkanes, a known carbene transfer reagent. The (ONO)TaCl2 complex proved to be a competent catalyst to generate cyclopropanes from styrene and the corresponding diazoalkane. Chapter 5 explores the utilization of the (ONO) ligand to store electron equivalents for the catalytic nitrene-nitrene coupling reactions with organoazides to afford organodiazenes. Finally, Chapter 6 addresses the electronic considerations of a related redox-active triamido ligand in an effort to tune the ligand's redox potentials.

Synthesis, Characterization, and Reactivity Studies of Iron Complexes Supported by the Redox-active [ONO] Ligand

Synthesis, Characterization, and Reactivity Studies of Iron Complexes Supported by the Redox-active [ONO] Ligand PDF Author: Janice Lin Wong
Publisher:
ISBN: 9781321094466
Category :
Languages : en
Pages : 123

Get Book Here

Book Description
The work reported herein primarily focuses on the development of new platforms for multi-electron reactivity using iron complexes supported by a redox-active pincer-type ligand. This dissertation details the synthesis, characterization, and reactivity of iron complexes coordinated to the redox-active [ONO] ([ONO]H3 = bis(3,5-di-[tert]-butyl-2-phenol)amine) ligand. Chapter 1 provides a general background on ligand-centered and metal-centered redox reactivity. Specifically, the characteristics of redox-active ligands and their ability to promote multi-electron reactivity at redox-inert metal centers is presented. In addition, iron-catalyzed organic transformations in which the metal center undergoes redox changes is also discussed. Finally, ligand-enabled redox reactions mediated by iron complexes containing redox-active ligands is described. Chapter 2 reports on the complexation of bis(3,5-di-[tert]-butyl-2-phenoxy)amine, [ONHO], and the redox-active [ONO] ligands by iron centers to afford a new family of iron complexes. Characterizations of each compound through a battery of analytical techniques reveal the oxidation states of the metal center and ligand. Furthermore, the electronic properties of each complex were investigated in order to evaluate their potential to facilitate multi-electron reactivity. Chapter 3 details the reactivity of the [ONO]Fe platform. Metathesis reactions are conducted with [ONO [superscript q] Fe [superscript III] X2 (X = Cl, N[SiMe3]2 complexes, demonstrating the capability of the fully-oxidized [ONO [superscript q]−1 to act as a two-electron acceptor to generate the fully reduced [ONO [superscript cat]3− that is coordinated to an iron(III) center. Similarly, oxidation of [ONO[superscript cat] Fe [superscript III] (py)3 (py = pyridine) using dihalogens result in two-electron oxidations of the tridentate ligand while the metal oxidation state remains the same. These redox reactions showcase the ability of the [ONO] ligand platform to undergo reversible two-electron oxidation state changes, allowing multi-electron reactivity to occur at the iron center. The synthesis and characterization of two novel bimetallic complexes of the form [ONO]M'[ONO]2 M (M' = Fe, Zn; M = Fe) are presented in Chapter 4. The rich redox profiles of both complexes suggest that they can potentially impart unique cooperative bimetallic reactivity. The synthetic techniques developed to prepare these complexes lay the foundation for a general method to access new bimetallic combinations that could be promising for multi-electron reactivity. Finally, Chapter 5 discusses the synthesis, characterization, and electronic comparisons between two homoleptic tris-iminosemiquinonate chromium(III) compounds. While one is coordinated to three N,N'-bis(3,5-dimethylphenyl)acenapthenediimino-semiquinonate, (dmp-ADI [superscript sq])1−, ligands, the other contains three N,N'-bis(3,5-dimethylphenyl)phenanthrenediimino-semiquinonate, (dmp-PDIsq)1− ligands. The differences in the electronic properties between each complex likely stems from variation in the diimine ligand backbones. However, further investigation is required to completely understand the complicated behaviors of such complexes, both of which apparently exhibit intramolecular anti-ferromagnetic properties.

The Great Potential of Redox Active Ligands

The Great Potential of Redox Active Ligands PDF Author: Meredith Miles
Publisher:
ISBN:
Category : Biochemistry
Languages : en
Pages : 60

Get Book Here

Book Description
Metal N-heterocyclic carbene (NHC) complexes have recently gained much popularity due to their tunable, steric, and electronic properties. Applications for such versatile molecules include organocatalysis1 2 3, olefin metathesis4 5 6, sundry cyclization reactions7 8 9, and materials chemistry10 11. Redox active NHCs are of special interest due to their ability to alter the electronic properties of the metal centers they are ligated to.12 In the first chapter, Au(I)-NHC complexes were synthesized and tested for biological activity in human cancer cell lines. Increasing reactive oxygen species (ROS) in cellular systems has proven to be a successful pathway for treating cancer13 14 15. The redox active group in this case was naphthoquinone which contributed to the oxidative stress applied to the tumor cells. Three Au(I)-NHC complexes were synthesized and analyzed structurally utilizing 1H NMR, 13C NMR, and X-ray crystallography. Biological studies including IC50 cell culture lines and cell proliferation analyses were performed to determine the complexes' efficiency and success as a cancer treatment drug. The second chapter describes a theoretical approach to synthesize a redox active tetrathiafulvalene (TTF) fused with an iridium-NHC complex to serve as a redox switchable catalyst. The first compound in this synthetic route was successfully synthesized and analyzed structurally with 1H and 13C NMR, UV-Vis spectroscopy, and IR spectroscopy. The electrochemical properties were also investigated. Tetrathiafulvalene possesses the ability to undergo multiple one electron reversible redox transformations. This unique characteristic paired with the catalytic properties of iridium-NHC could produce a catalyst capable of accessing three or more catalytic species based upon the oxidation state of TTF.

Design of Redox-active Ligands

Design of Redox-active Ligands PDF Author: Nico Matteo Bonanno
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This thesis describes the design, synthesis, properties, and coordination chemistry of redoxactive ligands. This thesis also explores new ways of expanding our ligand systems, in order to improve their binding capacities. We accomplished this by utilizing familiar redox-active moieties and structures to those published previously in our group, but with enhanced topological capacities and predictable structural outcomes. Chapter 1 begins with a general outline of the fundamental principles that govern organic radicals including; their reactivity, their properties and applications, and how these can be applied to the design of ligands for polynuclear assembly. Chapter 2 starts with a brief overview of arylazo ligands and the synthesis of a new hydrazone substituted phenalenol ligand (2.1). In the following section (2.2) we use this ligand to produce homoleptic ligand mixed-valence complexes featuring trivalent cobalt and iron metals. The chapter is concluded (2.3) with the synthesis of a new ditopic aryl-azo ligand and its cobalt coordination chemistry involving a neutral tetra-radical/tetra-nuclear molecular grid featuring valence tautomerism. Chapter 3 begins with the design and synthesis of a new ditopic diamino phenol ligand, which was found to oxidize to a neutral stable phenoxyl radical (3.1-3.2). The solution properties, which include reversible pi-dimerization of this stable radical are also described (3.3), and later the substitution chemistry of this new ligand is explored (3.4). In chapter 4, we describe the coordination chemistry of this new ditopic aminophenol ligand, which includes assembly into several coordination clusters involving copper (4.2), iron (4.3), nickel (4.4), and zinc (4.5). These coordination clusters feature the ligand in a variety of oxidation states; including rare examples of dianion "aminyl" radical clusters. In chapter 5, we begin with a description of a new synthetic derivative which can be used for the construction of larger tetratopic or asymmetric diamino phenol ligands. In 5.2 we describe the synthesis of a tetratopic aminophenol ligand along with its reactivity and aerial oxidation to a tri-phenoxyl radical. In 5.3, we conclude the thesis with the use of an asymmetric diamino phenol ligand and it's Cu(II/III) coordination chemistry, which displayed unique reactivity with molecular oxygen.

Controlling Redox Processes in Metal Complexes and Multifunctional Materials

Controlling Redox Processes in Metal Complexes and Multifunctional Materials PDF Author: Khrystyna Herasymchuk
Publisher:
ISBN:
Category :
Languages : en
Pages : 207

Get Book Here

Book Description
Transition metal complexes incorporating redox-active ligands have the potential to facilitate controlled multielectron chemistry, enabling their use in catalysis and energy storage applications. Moreover, the use of transition metal complexes containing redox-active ligands has been extended to two- (2D) and three-dimensional (3D) materials, such as supramolecular assemblies (i.e., metallacycles, molecular cages, or macrocycles) and metal-organic frameworks (MOFs) for catalytic, magnetic, electronic, and sensing applications. Salens (N2O2 bis(Schiff-base)-bis(phenolate) are an important class of redox-active ligands, and have been investigated in detail as they are able to stabilize both low and high metal oxidation states for the above-mentioned applications. The work in this thesis focuses on the synthesis and electronic structure elucidation of metal salen complexes in monomeric form, as discrete supramolecular assemblies and 3D MOFs. Structural and spectroscopic characterization of the neutral and oxidized species was completed using mass spectrometry, cyclic voltammetry, X-ray diffraction, NMR, UV-Vis-NIR, and EPR spectroscopies, as well as theoretical (DFT) calculations. Chapter 2 discusses the synthesis and electronic structure evaluation of a series of oxidized uranyl complexes, containing redox-active salen ligands with varying para-ring substituents (tBu, OMe, NMe2). Chapters 3 and 4 discuss the incorporation of a redox-active nickel salen complex equipped with pyridyl groups on the peripheral positions of the ligand framework into supramolecular structures via coordination-driven self-assembly. The self-assembly results in formation of a number of distinct metallacycles, affording di-, tetra-, and octa-ligand radical species. Finally, the design, synthesis, and incorporation of metal salen units into MOFs is discussed in Chapter 5. Preliminary assembly and oxidation experiments are presented as an opportunity to explore the redox-properties of salen complexes incorporated into a solid-state 3D framework. Overall, the work described in this thesis provides a pathway for salen ligand radical systems to be used in redox-controlled host-guest chemistry, catalysis, and sensing.

Synthesis, Characterization and Applications of Complexes Involving Redox-active Ligands

Synthesis, Characterization and Applications of Complexes Involving Redox-active Ligands PDF Author: Romain Kunert
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
We developed a new type of redox-active ligand, involving two N-heterocyclic carbenes and two phenolate units. The strong electron donating properties of the NHC moieties were utilized to stabilize complexes in high oxidation states while the phenolate groups were used as redox-active units. Group 10 metal complexes were developed. Their oxidation chemistry showed the formation of phenoxyl radicals, reaching up to two-electron oxidized, bis(phenoxyl) complexes. We also report the first Ni(III) complex with NHC donors. The ligand was also used to develop metal complexes with nitride ligands. The nitridomanganese complex proved to be unstable and degraded in successive intramolecular nitride-NHC reductive couplings. The degradation afforded a peculiar organic salt with three fused rings forming a central triazone pattern. Conversely, the chromium nitride complex could be isolated and thoroughly characterized. The one-electron oxidized product was generated reversibly at low temperature but readily evolved at room temperature. In a parallel work, we also developed new types of sterically hindered salen ligands to form distorted copper salen complexes as molecular models of galactose oxidase. The copper salen catalysts showed to be effective for the aerobic oxidation of non-activated alcohol substrates.