An Introduction to Topology and Homotopy

An Introduction to Topology and Homotopy PDF Author: Allan J. Sieradski
Publisher: Brooks/Cole
ISBN:
Category : Mathematics
Languages : en
Pages : 510

Get Book Here

Book Description
This text is an introduction to topology and homotopy. Topics are integrated into a coherent whole and developed slowly so students will not be overwhelmed.

An Introduction to Topology and Homotopy

An Introduction to Topology and Homotopy PDF Author: Allan J. Sieradski
Publisher: Brooks/Cole
ISBN:
Category : Mathematics
Languages : en
Pages : 510

Get Book Here

Book Description
This text is an introduction to topology and homotopy. Topics are integrated into a coherent whole and developed slowly so students will not be overwhelmed.

Homotopy Theory: An Introduction to Algebraic Topology

Homotopy Theory: An Introduction to Algebraic Topology PDF Author:
Publisher: Academic Press
ISBN: 0080873804
Category : Mathematics
Languages : en
Pages : 383

Get Book Here

Book Description
Homotopy Theory: An Introduction to Algebraic Topology

Introduction to Homotopy Theory

Introduction to Homotopy Theory PDF Author: Martin Arkowitz
Publisher: Springer Science & Business Media
ISBN: 144197329X
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
This is a book in pure mathematics dealing with homotopy theory, one of the main branches of algebraic topology. The principal topics are as follows: Basic Homotopy; H-spaces and co-H-spaces; fibrations and cofibrations; exact sequences of homotopy sets, actions, and coactions; homotopy pushouts and pullbacks; classical theorems, including those of Serre, Hurewicz, Blakers-Massey, and Whitehead; homotopy Sets; homotopy and homology decompositions of spaces and maps; and obstruction theory. The underlying theme of the entire book is the Eckmann-Hilton duality theory. The book can be used as a text for the second semester of an advanced ungraduate or graduate algebraic topology course.

Introduction to Topology

Introduction to Topology PDF Author: V. A. Vasilʹev
Publisher: American Mathematical Soc.
ISBN: 0821821628
Category : Mathematics
Languages : en
Pages : 165

Get Book Here

Book Description
This English translation of a Russian book presents the basic notions of differential and algebraic topology, which are indispensable for specialists and useful for research mathematicians and theoretical physicists. In particular, ideas and results are introduced related to manifolds, cell spaces, coverings and fibrations, homotopy groups, homology and cohomology, intersection index, etc. The author notes, "The lecture note origins of the book left a significant imprint on itsstyle. It contains very few detailed proofs: I tried to give as many illustrations as possible and to show what really occurs in topology, not always explaining why it occurs." He concludes, "As a rule, only those proofs (or sketches of proofs) that are interesting per se and have importantgeneralizations are presented."

General Topology and Homotopy Theory

General Topology and Homotopy Theory PDF Author: I.M. James
Publisher: Springer Science & Business Media
ISBN: 1461382831
Category : Mathematics
Languages : en
Pages : 253

Get Book Here

Book Description
Students of topology rightly complain that much of the basic material in the subject cannot easily be found in the literature, at least not in a convenient form. In this book I have tried to take a fresh look at some of this basic material and to organize it in a coherent fashion. The text is as self-contained as I could reasonably make it and should be quite accessible to anyone who has an elementary knowledge of point-set topology and group theory. This book is based on a course of 16 graduate lectures given at Oxford and elsewhere from time to time. In a course of that length one cannot discuss too many topics without being unduly superficial. However, this was never intended as a treatise on the subject but rather as a short introductory course which will, I hope, prove useful to specialists and non-specialists alike. The introduction contains a description of the contents. No algebraic or differen tial topology is involved, although I have borne in mind the needs of students of those branches of the subject. Exercises for the reader are scattered throughout the text, while suggestions for further reading are contained in the lists of references at the end of each chapter. In most cases these lists include the main sources I have drawn on, but this is not the type of book where it is practicable to give a reference for everything.

A Combinatorial Introduction to Topology

A Combinatorial Introduction to Topology PDF Author: Michael Henle
Publisher: Courier Corporation
ISBN: 9780486679662
Category : Mathematics
Languages : en
Pages : 340

Get Book Here

Book Description
Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.

Modern Classical Homotopy Theory

Modern Classical Homotopy Theory PDF Author: Jeffrey Strom
Publisher: American Mathematical Soc.
ISBN: 0821852868
Category : Mathematics
Languages : en
Pages : 862

Get Book Here

Book Description
The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.

Introduction to Topology

Introduction to Topology PDF Author: Theodore W. Gamelin
Publisher: Courier Corporation
ISBN: 0486320189
Category : Mathematics
Languages : en
Pages : 258

Get Book Here

Book Description
This text explains nontrivial applications of metric space topology to analysis. Covers metric space, point-set topology, and algebraic topology. Includes exercises, selected answers, and 51 illustrations. 1983 edition.

Introduction to Homotopy Theory

Introduction to Homotopy Theory PDF Author: Paul Selick
Publisher: American Mathematical Soc.
ISBN: 9780821844366
Category : Mathematics
Languages : en
Pages : 220

Get Book Here

Book Description
Offers a summary for students and non-specialists who are interested in learning the basics of algebraic topology. This book covers fibrations and cofibrations, Hurewicz and cellular approximation theorems, topics in classical homotopy theory, simplicial sets, fiber bundles, Hopf algebras, and generalized homology and cohomology operations.

Algebraic Topology - Homotopy and Homology

Algebraic Topology - Homotopy and Homology PDF Author: Robert M. Switzer
Publisher: Springer
ISBN: 3642619231
Category : Mathematics
Languages : en
Pages : 541

Get Book Here

Book Description
From the reviews: "The author has attempted an ambitious and most commendable project. [...] The book contains much material that has not previously appeared in this format. The writing is clean and clear and the exposition is well motivated. [...] This book is, all in all, a very admirable work and a valuable addition to the literature." Mathematical Reviews