An Introduction to the Semiclassical Limit of Euclidean Quantum Mechanics

An Introduction to the Semiclassical Limit of Euclidean Quantum Mechanics PDF Author: Torbjörn Kolsrud
Publisher:
ISBN:
Category :
Languages : en
Pages : 116

Get Book Here

Book Description

An Introduction to the Semiclassical Limit of Euclidean Quantum Mechanics

An Introduction to the Semiclassical Limit of Euclidean Quantum Mechanics PDF Author: Torbjörn Kolsrud
Publisher:
ISBN:
Category :
Languages : en
Pages : 116

Get Book Here

Book Description


Semi-Classical Approximation in Quantum Mechanics

Semi-Classical Approximation in Quantum Mechanics PDF Author: Victor P. Maslov
Publisher: Springer Science & Business Media
ISBN: 9781402003066
Category : Science
Languages : en
Pages : 320

Get Book Here

Book Description
This volume is concerned with a detailed description of the canonical operator method - one of the asymptotic methods of linear mathematical physics. The book is, in fact, an extension and continuation of the authors' works [59], [60], [65]. The basic ideas are summarized in the Introduction. The book consists of two parts. In the first, the theory of the canonical operator is develop ed, whereas, in the second, many applications of the canonical operator method to concrete problems of mathematical physics are presented. The authors are pleased to express their deep gratitude to S. M. Tsidilin for his valuable comments. THE AUTHORS IX INTRODUCTION 1. Various problems of mathematical and theoretical physics involve partial differential equations with a small parameter at the highest derivative terms. For constructing approximate solutions of these equations, asymptotic methods have long been used. In recent decades there has been a renaissance period of the asymptotic methods of linear mathematical physics. The range of their applicability has expanded: the asymptotic methods have been not only continuously used in traditional branches of mathematical physics but also have had an essential impact on the development of the general theory of partial differential equations. It appeared recently that there is a unified approach to a number of problems which, at first sight, looked rather unrelated.

Stochastic Processes, Physics And Geometry Ii - Proceedings Of The Iii International Conference

Stochastic Processes, Physics And Geometry Ii - Proceedings Of The Iii International Conference PDF Author: Sergio Albeverio
Publisher: World Scientific
ISBN: 981454969X
Category :
Languages : en
Pages : 758

Get Book Here

Book Description
As was already evident from the previous two meetings, the theory of stochastic processes, the study of geometrical structures, and the investigation of certain physical problems are inter-related. In fact the trend in recent years has been towards stronger interactions between these areas. As a result, a large component of the contributions is concerned with the theory of stochastic processes, quantum theory, and their relations.

Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets

Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets PDF Author: Hagen Kleinert
Publisher: World Scientific
ISBN: 9789812381071
Category : Science
Languages : en
Pages : 1512

Get Book Here

Book Description
This is the third, significantly expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have become possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's famous formula to include singular attractive 1/r and 1/r2 potentials. The second is a simple quantum equivalence principle governing the transformation of euclidean path integrals to spaces with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations. In addition to the time-sliced definition, the author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely integrals over products of distributions. The powerful Feynman -- Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent expansions. The convergence is uniform from weak to strong couplings, opening a way to precise approximate evaluations of analytically unsolvable path integrals. Tunneling processes are treated in detail. The results are used to determine the lifetime of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbationexpansions. A new variational treatment extends the range of validity of previous tunneling theories from large to small barriers. A corresponding extension of large-order perturbation theory also applies now to small orders. Special attention is devoted to path integrals with topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chem-Simons theory of particles with fractional statistics (anyohs) is introduced and applied to explain the fractional quantum Hall effect. The relevance of path integrals to financial markets is discussed, and improvements of the famous Black -- Scholes formula for option prices are given which account for the fact that large market fluctuations occur much more frequently than in the commonly used Gaussian distributions.

Introduction To The Mathematical Structure Of Quantum Mechanics, An: A Short Course For Mathematicians (2nd Edition)

Introduction To The Mathematical Structure Of Quantum Mechanics, An: A Short Course For Mathematicians (2nd Edition) PDF Author: Franco Strocchi
Publisher: World Scientific Publishing Company
ISBN: 9813107367
Category : Science
Languages : en
Pages : 193

Get Book Here

Book Description
The second printing contains a critical discussion of Dirac derivation of canonical quantization, which is instead deduced from general geometric structures. This book arises out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students. The mathematical structure of QM is formulated in terms of the C*-algebra of observables, which is argued on the basis of the operational definition of measurements and the duality between states and observables, for a general physical system.The Dirac-von Neumann axioms are then derived. The description of states and observables as Hilbert space vectors and operators follows from the GNS and Gelfand-Naimark Theorems. The experimental existence of complementary observables for atomic systems is shown to imply the noncommutativity of the observable algebra, the distinctive feature of QM; for finite degrees of freedom, the Weyl algebra codifies the experimental complementarity of position and momentum (Heisenberg commutation relations) and Schrödinger QM follows from the von Neumann uniqueness theorem.The existence problem of the dynamics is related to the self-adjointness of the Hamiltonian and solved by the Kato-Rellich conditions on the potential, which also guarantee quantum stability for classically unbounded-below Hamiltonians. Examples are discussed which include the explanation of the discreteness of the atomic spectra.Because of the increasing interest in the relation between QM and stochastic processes, a final chapter is devoted to the functional integral approach (Feynman-Kac formula), to the formulation in terms of ground state correlations (the quantum mechanical analog of the Wightman functions) and their analytic continuation to imaginary time (Euclidean QM). The quantum particle on a circle is discussed in detail, as an example of the interplay between topology and functional integral, leading to the emergence of superselection rules and θ sectors.

Classical And Quantum Systems: Foundations And Symmetries - Proceedings Of The 2nd International Wigner Symposium

Classical And Quantum Systems: Foundations And Symmetries - Proceedings Of The 2nd International Wigner Symposium PDF Author: Heinz-dietrich Doebner
Publisher: World Scientific
ISBN: 9814554391
Category :
Languages : en
Pages : 818

Get Book Here

Book Description
The Wigner Symposium series is focussed on fundamental problems and new developments in physics and their experimental, theoretical and mathematical aspects. Particular emphasis is given to those topics which have developed from the work of Eugene P Wigner. The 2nd Wigner symposium is centered around notions of symmetry and geometry, the foundations of quantum mechanics, quantum optics and particle physics. Other fields like dynamical systems, neural networks and physics of information are also represented.This volume brings together 19 plenary lectures which survey latest developments and more than 130 contributed research reports.

Non-linear And Collective Phenomena In Quantum Physics: A Reprint Volume From Physics Reports

Non-linear And Collective Phenomena In Quantum Physics: A Reprint Volume From Physics Reports PDF Author: Maurice Jacob
Publisher: World Scientific
ISBN: 9814518891
Category : Science
Languages : en
Pages : 526

Get Book Here

Book Description
Contents: Extended Systems in Field Theory :Introduction (J-L Gervais and A Neveu)Vortices and Quark Confinement in Non-Abelian Gauge Theories (S Mandelstam)Magnetic and Electric Confinement of Quarks (Y Nambu)Examples of Four-Dimensional Soliton Solutions and Abnormal Nuclear States (T D Lee)Classical Solution in the Massive Thirring Model (S-J Chang)Semiclassical Quantization Methods in Field Theory (A Neveu)The Quantum Theory of Solitons and Other Non-Linear Classical Waves (R Jackiw)Collective Coordinate Method for Quantization of Extended Systems (J-L Gervais, A Jevicki and B Sakita)Quantum Expansion of Soliton Solutions (N H Christ)Hartree-Type Approximation Applied to a ϕ4 Field Theory (S-J Chang)Soliton Operators for the Quantized Sine–Gordon Equation (S Mandelstam)Classical Aspects and Fluctuation-Behaviour of Two Dimensional Models in Statistical Mechanics and Many Body Physics (B Schroer)Quarks on a Lattice, or, the Colored String Model (K G Wilson)New Ideas about Confinement (L Susskind and J Kogut)Gauge Fields on a Lattice (C Itzykson)Non-Perturbative Aspects in Quantum Field Theory:Self-Dual Solutions to Euclidean Yang–Mills Equations (E Corrigan)An Introduction to the Twistor Programme (J Madore, J L Richard and R Stora)Collective Coordinates with Non-Trivial Dynamics (J-L Gervais)A Theory of the Strong Interactions (D J Gross)Magneticmonopoles (D Olive)Dynamical and Topological Considerations on Quark Confinement (F Englert and P Windey)Difficulties in Fixing the Gauge in Non-Abelian Gauge Theories (S Sciuto)Indeterminate-Mass Particles (B M Mccoy and T T Wu)Duality for Discrete Lattice Gauge Fields (C Itzykson)Large Order Estimates in Perturbation Theory (J Zinn-Justin)The Borel Transform and the Renormalization Group (G Parisi)Planar Diagrams (E Brezin)Exact S-Matrices and Form Factors in 1 + 1 Dimensional Field Theoretic Models with Soliton Behaviour (M Karowski)Topology and Higher Symmetries of the Two-Dimensional Nonlinear σ Model (A D'adda, M Luscher and P Di Vecchia)Two-Dimensional Yang–Mills Theory in the Leading 1/N Expansion (T T Wu)Superfluidity and the Two-Dimensional XY Model' (D R Nelson)Bosonized Fermions in Three Dimensions (A Luther)Symmetry and Topology Concepts for Spin Glasses and Other Glasses (G Toulouse)Common Trends in Particle and Condensed Matter Physics:Introduction to Localization(D J Thouless)Conductivity Scaling and Localization(E Abrahams)Disordered Electronic System as a Model of Interacting Matrices(F Wegner)Status Report on Spin Glasses (Not Included in this Report)(S Kirkpatrick)Mean Field Theory for Spin Glasses(G Parisi)The Random Energy Model(B Derrida)Towards a Mean Field Theory of Spin Glasses: the Tap Route Revisited (C De Dominicis)On the Connection Between Spin Glasses and Gauge Field Theories(G Toulouse, J Vannimenus)Monte Carlo Simulations of Lattice Gauge Theories(C Rebbi)Large Dimension Expansions and Transition Patterns in Lattice Gauge Theories(J-M Drouffe)Progress in Lattice Gauge Theory(J B Kogut)Phase Structure of the Z(2) Gauge and Matter Theory(D Horn)General Introduction to Confinement(S Mandelstam)A Simple Picture of the Weak-to-Strong Coupling Transition in Quantum Chromodynamics(C G Callan Jr.)Quantum Fluctuations in a Multiinstanton Background(B A Berg)Some Comments on the Crossover Between Strong and Weak Coupling in Su(2) Pure Yang–Mills Theory(J Frohlich)String Dynamics in QCD (J-L Gervais, A Neveu)Dual Models and Strings: The Critical Dimension(C B Thorn: )Duality and Finite Size Effects in Six Vertex Models(C.B. Thorn: )Scaling at a Bifurcation Point(M Nauenberg, D Scalapino)Some Implications of a Cosmological Phase Transition(T W B Kibble) Readership: Graduate students and researchers in particle physics andcondensed matter physics.

Path Integrals In Quantum Mechanics, Statistics, Polymer Physics, And Financial Markets (4th Edition)

Path Integrals In Quantum Mechanics, Statistics, Polymer Physics, And Financial Markets (4th Edition) PDF Author: Hagen Kleinert
Publisher: World Scientific Publishing Company
ISBN: 9813101717
Category : Science
Languages : en
Pages : 1593

Get Book Here

Book Description
This is the fourth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have become possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's famous formula to include singular attractive 1/r and 1/r2 potentials. The second is a simple quantum equivalence principle governing the transformation of euclidean path integrals to spaces with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations.In addition to the time-sliced definition, the author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely integrals over products of distributions.The powerful Feynman-Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent expansions. The convergence is uniform from weak to strong couplings, opening a way to precise approximate evaluations of analytically unsolvable path integrals.Tunneling processes are treated in detail. The results are used to determine the lifetime of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbation expansions. A new variational treatment extends the range of validity of previous tunneling theories from large to small barriers. A corresponding extension of large-order perturbation theory also applies now to small orders.Special attention is devoted to path integrals with topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect.The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are given which account for the fact that large market fluctuations occur much more frequently than in the commonly used Gaussian distributions.The author's other book on ‘Critical Properties of φ4 Theories’ gives a thorough introduction to the field of critical phenomena and develops new powerful resummation techniques for the extraction of physical results from the divergent perturbation expansions.

Stochasticity and Quantum Chaos

Stochasticity and Quantum Chaos PDF Author: Z. Haba
Publisher: Springer Science & Business Media
ISBN: 9401101698
Category : Science
Languages : en
Pages : 222

Get Book Here

Book Description
These are the proceedings of the Third Max Born Symposium which took place at SobOtka Castle in September 1993. The Symposium is organized annually by the Institute of Theoretical Physics of the University of Wroclaw. Max Born was a student and later on an assistant at the University of Wroclaw (Wroclaw belonged to Germany at this time and was called Breslau). The topic of the Max Born Sympo sium varies each year reflecting the developement of theoretical physics. The subject of this Symposium "Stochasticity and quantum chaos" may well be considered as a continuation of the research interest of Max Born. Recall that Born treats his "Lectures on the mechanics of the atom" (published in 1925) as a nrst volume of a complete monograph (supposedly to be written by another person). His lectures concern the quantum mechanics of integrable systems. The quantum mechanics of non-integrable systems was the subject of the Third Max Born Symposium. It is known that classical non-integrable Hamiltonian systems show a chaotic behaviour. On the other hand quantum systems bounded in space are quasiperi odic. We believe that quantum systems have a reasonable classical limit. It is not clear how to reconcile the seemingly regular behaviour of quantum systems with the possible chaotic properties of their classical counterparts. The quantum proper ties of classically chaotic systems constitute the main subject of these Proceedings. Other topics discussed are: the quantum mechanics of dissipative systems, quantum measurement theory, the role of noise in classical and quantum systems.

Classical Nonintegrability, Quantum Chaos

Classical Nonintegrability, Quantum Chaos PDF Author: Andreas Knauf
Publisher: Birkhäuser
ISBN: 3034889321
Category : Science
Languages : en
Pages : 104

Get Book Here

Book Description
Our DMV Seminar on 'Classical Nonintegrability, Quantum Chaos' intended to introduce students and beginning researchers to the techniques applied in nonin tegrable classical and quantum dynamics. Several of these lectures are collected in this volume. The basic phenomenon of nonlinear dynamics is mixing in phase space, lead ing to a positive dynamical entropy and a loss of information about the initial state. The nonlinear motion in phase space gives rise to a linear action on phase space functions which in the case of iterated maps is given by a so-called transfer operator. Good mixing rates lead to a spectral gap for this operator. Similar to the use made of the Riemann zeta function in the investigation of the prime numbers, dynamical zeta functions are now being applied in nonlinear dynamics. In Chapter 2 V. Baladi first introduces dynamical zeta functions and transfer operators, illustrating and motivating these notions with a simple one-dimensional dynamical system. Then she presents a commented list of useful references, helping the newcomer to enter smoothly into this fast-developing field of research. Chapter 3 on irregular scattering and Chapter 4 on quantum chaos by A. Knauf deal with solutions of the Hamilton and the Schr6dinger equation. Scatter ing by a potential force tends to be irregular if three or more scattering centres are present, and a typical phenomenon is the occurrence of a Cantor set of bounded orbits. The presence of this set influences those scattering orbits which come close.