Author: F. Strocchi
Publisher: World Scientific
ISBN: 9812835229
Category : Science
Languages : en
Pages : 193
Book Description
Arising out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students, this book formulates the mathematical structure of QM in terms of the C*-algebra of observables, which is argued on the basis of the operational definition of measurements and the duality between states and observables.
An Introduction to the Mathematical Structure of Quantum Mechanics
Author: F. Strocchi
Publisher: World Scientific
ISBN: 9812835229
Category : Science
Languages : en
Pages : 193
Book Description
Arising out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students, this book formulates the mathematical structure of QM in terms of the C*-algebra of observables, which is argued on the basis of the operational definition of measurements and the duality between states and observables.
Publisher: World Scientific
ISBN: 9812835229
Category : Science
Languages : en
Pages : 193
Book Description
Arising out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students, this book formulates the mathematical structure of QM in terms of the C*-algebra of observables, which is argued on the basis of the operational definition of measurements and the duality between states and observables.
Quantum Mechanics
Author: Gregory L. Naber
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110752042
Category : Science
Languages : en
Pages : 675
Book Description
This work covers quantum mechanics by answering questions such as where did the Planck constant and Heisenberg algebra come from, what motivated Feynman to introduce his path integral and why does one distinguish two types of particles, the bosons and fermions. The author addresses all these topics with utter mathematical rigor. The high number of instructive Appendices and numerous Remark sections supply the necessary background knowledge.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110752042
Category : Science
Languages : en
Pages : 675
Book Description
This work covers quantum mechanics by answering questions such as where did the Planck constant and Heisenberg algebra come from, what motivated Feynman to introduce his path integral and why does one distinguish two types of particles, the bosons and fermions. The author addresses all these topics with utter mathematical rigor. The high number of instructive Appendices and numerous Remark sections supply the necessary background knowledge.
Mathematical Structures Of Quantum Mechanics
Author: Kow Lung Chang
Publisher: World Scientific Publishing Company
ISBN: 9813108231
Category : Science
Languages : en
Pages : 209
Book Description
This marvelous book is aimed at strengthening the mathematical background and sharpening the mathematical tools of students without rigorous training before taking the quantum mechanics course. The abstract construction of quantum postulates in the framework of Hilbert space and Hermitian operators are realized by q-representation in the formulation to demonstrate the conventional approach to quantum theory.Symmetry property is emphasized and extensively explored in this book both in continuous transformations as well as in the discrete ones. The space-time structure is discussed in depth and Dirac equation is formulated by symmetry consideration of Lorentz group.
Publisher: World Scientific Publishing Company
ISBN: 9813108231
Category : Science
Languages : en
Pages : 209
Book Description
This marvelous book is aimed at strengthening the mathematical background and sharpening the mathematical tools of students without rigorous training before taking the quantum mechanics course. The abstract construction of quantum postulates in the framework of Hilbert space and Hermitian operators are realized by q-representation in the formulation to demonstrate the conventional approach to quantum theory.Symmetry property is emphasized and extensively explored in this book both in continuous transformations as well as in the discrete ones. The space-time structure is discussed in depth and Dirac equation is formulated by symmetry consideration of Lorentz group.
Mathematical Concepts of Quantum Mechanics
Author: Stephen J. Gustafson
Publisher: Springer Nature
ISBN: 3030595625
Category : Mathematics
Languages : en
Pages : 453
Book Description
The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include: many-body systems, modern perturbation theory, path integrals, the theory of resonances, adiabatic theory, geometrical phases, Aharonov-Bohm effect, density functional theory, open systems, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. Some of the sections could be used for introductions to geometrical methods in Quantum Mechanics, to quantum information theory and to quantum electrodynamics and quantum field theory.
Publisher: Springer Nature
ISBN: 3030595625
Category : Mathematics
Languages : en
Pages : 453
Book Description
The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include: many-body systems, modern perturbation theory, path integrals, the theory of resonances, adiabatic theory, geometrical phases, Aharonov-Bohm effect, density functional theory, open systems, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. Some of the sections could be used for introductions to geometrical methods in Quantum Mechanics, to quantum information theory and to quantum electrodynamics and quantum field theory.
Fundamental Mathematical Structures of Quantum Theory
Author: Valter Moretti
Publisher: Springer
ISBN: 3030183467
Category : Science
Languages : en
Pages : 345
Book Description
This textbook presents in a concise and self-contained way the advanced fundamental mathematical structures in quantum theory. It is based on lectures prepared for a 6 months course for MSc students. The reader is introduced to the beautiful interconnection between logic, lattice theory, general probability theory, and general spectral theory including the basic theory of von Neumann algebras and of the algebraic formulation, naturally arising in the study of the mathematical machinery of quantum theories. Some general results concerning hidden-variable interpretations of QM such as Gleason's and the Kochen-Specker theorems and the related notions of realism and non-contextuality are carefully discussed. This is done also in relation with the famous Bell (BCHSH) inequality concerning local causality. Written in a didactic style, this book includes many examples and solved exercises. The work is organized as follows. Chapter 1 reviews some elementary facts and properties of quantum systems. Chapter 2 and 3 present the main results of spectral analysis in complex Hilbert spaces. Chapter 4 introduces the point of view of the orthomodular lattices' theory. Quantum theory form this perspective turns out to the probability measure theory on the non-Boolean lattice of elementary observables and Gleason's theorem characterizes all these measures. Chapter 5 deals with some philosophical and interpretative aspects of quantum theory like hidden-variable formulations of QM. The Kochen-Specker theorem and its implications are analyzed also in relation BCHSH inequality, entanglement, realism, locality, and non-contextuality. Chapter 6 focuses on the algebra of observables also in the presence of superselection rules introducing the notion of von Neumann algebra. Chapter 7 offers the idea of (groups of) quantum symmetry, in particular, illustrated in terms of Wigner and Kadison theorems. Chapter 8 deals with the elementary ideas and results of the so called algebraic formulation of quantum theories in terms of both *-algebras and C*-algebras. This book should appeal to a dual readership: on one hand mathematicians that wish to acquire the tools that unlock the physical aspects of quantum theories; on the other physicists eager to solidify their understanding of the mathematical scaffolding of quantum theories.
Publisher: Springer
ISBN: 3030183467
Category : Science
Languages : en
Pages : 345
Book Description
This textbook presents in a concise and self-contained way the advanced fundamental mathematical structures in quantum theory. It is based on lectures prepared for a 6 months course for MSc students. The reader is introduced to the beautiful interconnection between logic, lattice theory, general probability theory, and general spectral theory including the basic theory of von Neumann algebras and of the algebraic formulation, naturally arising in the study of the mathematical machinery of quantum theories. Some general results concerning hidden-variable interpretations of QM such as Gleason's and the Kochen-Specker theorems and the related notions of realism and non-contextuality are carefully discussed. This is done also in relation with the famous Bell (BCHSH) inequality concerning local causality. Written in a didactic style, this book includes many examples and solved exercises. The work is organized as follows. Chapter 1 reviews some elementary facts and properties of quantum systems. Chapter 2 and 3 present the main results of spectral analysis in complex Hilbert spaces. Chapter 4 introduces the point of view of the orthomodular lattices' theory. Quantum theory form this perspective turns out to the probability measure theory on the non-Boolean lattice of elementary observables and Gleason's theorem characterizes all these measures. Chapter 5 deals with some philosophical and interpretative aspects of quantum theory like hidden-variable formulations of QM. The Kochen-Specker theorem and its implications are analyzed also in relation BCHSH inequality, entanglement, realism, locality, and non-contextuality. Chapter 6 focuses on the algebra of observables also in the presence of superselection rules introducing the notion of von Neumann algebra. Chapter 7 offers the idea of (groups of) quantum symmetry, in particular, illustrated in terms of Wigner and Kadison theorems. Chapter 8 deals with the elementary ideas and results of the so called algebraic formulation of quantum theories in terms of both *-algebras and C*-algebras. This book should appeal to a dual readership: on one hand mathematicians that wish to acquire the tools that unlock the physical aspects of quantum theories; on the other physicists eager to solidify their understanding of the mathematical scaffolding of quantum theories.
Spectral Theory and Quantum Mechanics
Author: Valter Moretti
Publisher: Springer
ISBN: 331970706X
Category : Mathematics
Languages : en
Pages : 962
Book Description
This book discusses the mathematical foundations of quantum theories. It offers an introductory text on linear functional analysis with a focus on Hilbert spaces, highlighting the spectral theory features that are relevant in physics. After exploring physical phenomenology, it then turns its attention to the formal and logical aspects of the theory. Further, this Second Edition collects in one volume a number of useful rigorous results on the mathematical structure of quantum mechanics focusing in particular on von Neumann algebras, Superselection rules, the various notions of Quantum Symmetry and Symmetry Groups, and including a number of fundamental results on the algebraic formulation of quantum theories. Intended for Master's and PhD students, both in physics and mathematics, the material is designed to be self-contained: it includes a summary of point-set topology and abstract measure theory, together with an appendix on differential geometry. The book also benefits established researchers by organizing and presenting the profusion of advanced material disseminated in the literature. Most chapters are accompanied by exercises, many of which are solved explicitly."
Publisher: Springer
ISBN: 331970706X
Category : Mathematics
Languages : en
Pages : 962
Book Description
This book discusses the mathematical foundations of quantum theories. It offers an introductory text on linear functional analysis with a focus on Hilbert spaces, highlighting the spectral theory features that are relevant in physics. After exploring physical phenomenology, it then turns its attention to the formal and logical aspects of the theory. Further, this Second Edition collects in one volume a number of useful rigorous results on the mathematical structure of quantum mechanics focusing in particular on von Neumann algebras, Superselection rules, the various notions of Quantum Symmetry and Symmetry Groups, and including a number of fundamental results on the algebraic formulation of quantum theories. Intended for Master's and PhD students, both in physics and mathematics, the material is designed to be self-contained: it includes a summary of point-set topology and abstract measure theory, together with an appendix on differential geometry. The book also benefits established researchers by organizing and presenting the profusion of advanced material disseminated in the literature. Most chapters are accompanied by exercises, many of which are solved explicitly."
Mathematical Foundations of Quantum Mechanics
Author: John von Neumann
Publisher: Princeton University Press
ISBN: 9780691028934
Category : Mathematics
Languages : en
Pages : 462
Book Description
A revolutionary book that for the first time provided a rigorous mathematical framework for quantum mechanics. -- Google books
Publisher: Princeton University Press
ISBN: 9780691028934
Category : Mathematics
Languages : en
Pages : 462
Book Description
A revolutionary book that for the first time provided a rigorous mathematical framework for quantum mechanics. -- Google books
The Mathematical Principles of Quantum Mechanics
Author: Derek F. Lawden
Publisher: Courier Corporation
ISBN: 0486442233
Category : Science
Languages : en
Pages : 306
Book Description
Focusing on the principles of quantum mechanics, this text for upper-level undergraduates and graduate students introduces and resolves special physical problems with more than 100 exercises. 1967 edition.
Publisher: Courier Corporation
ISBN: 0486442233
Category : Science
Languages : en
Pages : 306
Book Description
Focusing on the principles of quantum mechanics, this text for upper-level undergraduates and graduate students introduces and resolves special physical problems with more than 100 exercises. 1967 edition.
A Mathematical Primer on Quantum Mechanics
Author: Alessandro Teta
Publisher: Springer
ISBN: 3319778935
Category : Science
Languages : en
Pages : 265
Book Description
This book offers a rigorous yet elementary approach to quantum mechanics that will meet the needs of Master’s-level Mathematics students and is equally suitable for Physics students who are interested in gaining a deeper understanding of the mathematical structure of the theory. Throughout the coverage, which is limited to single-particle quantum mechanics, the focus is on formulating theory and developing applications in a mathematically precise manner. Following a review of selected key concepts in classical physics and the historical background, the basic elements of the theory of operators in Hilbert spaces are presented and used to formulate the rules of quantum mechanics. The discussion then turns to free particles, harmonic oscillators, delta potential, and hydrogen atoms, providing rigorous proofs of the corresponding dynamical properties. Starting from an analysis of these applications, readers are subsequently introduced to more advanced topics such as the classical limit, scattering theory, and spectral analysis of Schrödinger operators. The main content is complemented by numerous exercises that stimulate interactive learning and help readers check their progress.
Publisher: Springer
ISBN: 3319778935
Category : Science
Languages : en
Pages : 265
Book Description
This book offers a rigorous yet elementary approach to quantum mechanics that will meet the needs of Master’s-level Mathematics students and is equally suitable for Physics students who are interested in gaining a deeper understanding of the mathematical structure of the theory. Throughout the coverage, which is limited to single-particle quantum mechanics, the focus is on formulating theory and developing applications in a mathematically precise manner. Following a review of selected key concepts in classical physics and the historical background, the basic elements of the theory of operators in Hilbert spaces are presented and used to formulate the rules of quantum mechanics. The discussion then turns to free particles, harmonic oscillators, delta potential, and hydrogen atoms, providing rigorous proofs of the corresponding dynamical properties. Starting from an analysis of these applications, readers are subsequently introduced to more advanced topics such as the classical limit, scattering theory, and spectral analysis of Schrödinger operators. The main content is complemented by numerous exercises that stimulate interactive learning and help readers check their progress.
Quantum Mechanics in Simple Matrix Form
Author: Thomas F. Jordan
Publisher: Courier Corporation
ISBN: 0486137066
Category : Science
Languages : en
Pages : 274
Book Description
With this text, basic quantum mechanics becomes accessible to undergraduates with no background in mathematics beyond algebra. Includes more than 100 problems and 38 figures. 1986 edition.
Publisher: Courier Corporation
ISBN: 0486137066
Category : Science
Languages : en
Pages : 274
Book Description
With this text, basic quantum mechanics becomes accessible to undergraduates with no background in mathematics beyond algebra. Includes more than 100 problems and 38 figures. 1986 edition.