Author: J.W.S. Cassels
Publisher: Springer Science & Business Media
ISBN: 9783540617884
Category : Mathematics
Languages : en
Pages : 364
Book Description
From the reviews: "A well-written, very thorough account ... Among the topics are lattices, reduction, Minkowskis Theorem, distance functions, packings, and automorphs; some applications to number theory; excellent bibliographical references." The American Mathematical Monthly
An Introduction to the Geometry of Numbers
Author: J.W.S. Cassels
Publisher: Springer Science & Business Media
ISBN: 9783540617884
Category : Mathematics
Languages : en
Pages : 364
Book Description
From the reviews: "A well-written, very thorough account ... Among the topics are lattices, reduction, Minkowskis Theorem, distance functions, packings, and automorphs; some applications to number theory; excellent bibliographical references." The American Mathematical Monthly
Publisher: Springer Science & Business Media
ISBN: 9783540617884
Category : Mathematics
Languages : en
Pages : 364
Book Description
From the reviews: "A well-written, very thorough account ... Among the topics are lattices, reduction, Minkowskis Theorem, distance functions, packings, and automorphs; some applications to number theory; excellent bibliographical references." The American Mathematical Monthly
The Geometry of Numbers
Author: C. D. Olds
Publisher: Cambridge University Press
ISBN: 9780883856437
Category : Mathematics
Languages : en
Pages : 198
Book Description
A self-contained introduction to the geometry of numbers.
Publisher: Cambridge University Press
ISBN: 9780883856437
Category : Mathematics
Languages : en
Pages : 198
Book Description
A self-contained introduction to the geometry of numbers.
An Introduction to the Geometry of Numbers
Author: J.W.S. Cassels
Publisher: Springer Science & Business Media
ISBN: 3642620353
Category : Mathematics
Languages : en
Pages : 357
Book Description
From the reviews: "A well-written, very thorough account ... Among the topics are lattices, reduction, Minkowskis Theorem, distance functions, packings, and automorphs; some applications to number theory; excellent bibliographical references." The American Mathematical Monthly
Publisher: Springer Science & Business Media
ISBN: 3642620353
Category : Mathematics
Languages : en
Pages : 357
Book Description
From the reviews: "A well-written, very thorough account ... Among the topics are lattices, reduction, Minkowskis Theorem, distance functions, packings, and automorphs; some applications to number theory; excellent bibliographical references." The American Mathematical Monthly
Number Theory and Geometry: An Introduction to Arithmetic Geometry
Author: Álvaro Lozano-Robledo
Publisher: American Mathematical Soc.
ISBN: 147045016X
Category : Mathematics
Languages : en
Pages : 506
Book Description
Geometry and the theory of numbers are as old as some of the oldest historical records of humanity. Ever since antiquity, mathematicians have discovered many beautiful interactions between the two subjects and recorded them in such classical texts as Euclid's Elements and Diophantus's Arithmetica. Nowadays, the field of mathematics that studies the interactions between number theory and algebraic geometry is known as arithmetic geometry. This book is an introduction to number theory and arithmetic geometry, and the goal of the text is to use geometry as the motivation to prove the main theorems in the book. For example, the fundamental theorem of arithmetic is a consequence of the tools we develop in order to find all the integral points on a line in the plane. Similarly, Gauss's law of quadratic reciprocity and the theory of continued fractions naturally arise when we attempt to determine the integral points on a curve in the plane given by a quadratic polynomial equation. After an introduction to the theory of diophantine equations, the rest of the book is structured in three acts that correspond to the study of the integral and rational solutions of linear, quadratic, and cubic curves, respectively. This book describes many applications including modern applications in cryptography; it also presents some recent results in arithmetic geometry. With many exercises, this book can be used as a text for a first course in number theory or for a subsequent course on arithmetic (or diophantine) geometry at the junior-senior level.
Publisher: American Mathematical Soc.
ISBN: 147045016X
Category : Mathematics
Languages : en
Pages : 506
Book Description
Geometry and the theory of numbers are as old as some of the oldest historical records of humanity. Ever since antiquity, mathematicians have discovered many beautiful interactions between the two subjects and recorded them in such classical texts as Euclid's Elements and Diophantus's Arithmetica. Nowadays, the field of mathematics that studies the interactions between number theory and algebraic geometry is known as arithmetic geometry. This book is an introduction to number theory and arithmetic geometry, and the goal of the text is to use geometry as the motivation to prove the main theorems in the book. For example, the fundamental theorem of arithmetic is a consequence of the tools we develop in order to find all the integral points on a line in the plane. Similarly, Gauss's law of quadratic reciprocity and the theory of continued fractions naturally arise when we attempt to determine the integral points on a curve in the plane given by a quadratic polynomial equation. After an introduction to the theory of diophantine equations, the rest of the book is structured in three acts that correspond to the study of the integral and rational solutions of linear, quadratic, and cubic curves, respectively. This book describes many applications including modern applications in cryptography; it also presents some recent results in arithmetic geometry. With many exercises, this book can be used as a text for a first course in number theory or for a subsequent course on arithmetic (or diophantine) geometry at the junior-senior level.
Number, Shape, & Symmetry
Author: Diane L. Herrmann
Publisher: CRC Press
ISBN: 1466554649
Category : Mathematics
Languages : en
Pages : 446
Book Description
Through a careful treatment of number theory and geometry, Number, Shape, & Symmetry: An Introduction to Number Theory, Geometry, and Group Theory helps readers understand serious mathematical ideas and proofs. Classroom-tested, the book draws on the authors’ successful work with undergraduate students at the University of Chicago, seventh to tenth grade mathematically talented students in the University of Chicago’s Young Scholars Program, and elementary public school teachers in the Seminars for Endorsement in Science and Mathematics Education (SESAME). The first half of the book focuses on number theory, beginning with the rules of arithmetic (axioms for the integers). The authors then present all the basic ideas and applications of divisibility, primes, and modular arithmetic. They also introduce the abstract notion of a group and include numerous examples. The final topics on number theory consist of rational numbers, real numbers, and ideas about infinity. Moving on to geometry, the text covers polygons and polyhedra, including the construction of regular polygons and regular polyhedra. It studies tessellation by looking at patterns in the plane, especially those made by regular polygons or sets of regular polygons. The text also determines the symmetry groups of these figures and patterns, demonstrating how groups arise in both geometry and number theory. The book is suitable for pre-service or in-service training for elementary school teachers, general education mathematics or math for liberal arts undergraduate-level courses, and enrichment activities for high school students or math clubs.
Publisher: CRC Press
ISBN: 1466554649
Category : Mathematics
Languages : en
Pages : 446
Book Description
Through a careful treatment of number theory and geometry, Number, Shape, & Symmetry: An Introduction to Number Theory, Geometry, and Group Theory helps readers understand serious mathematical ideas and proofs. Classroom-tested, the book draws on the authors’ successful work with undergraduate students at the University of Chicago, seventh to tenth grade mathematically talented students in the University of Chicago’s Young Scholars Program, and elementary public school teachers in the Seminars for Endorsement in Science and Mathematics Education (SESAME). The first half of the book focuses on number theory, beginning with the rules of arithmetic (axioms for the integers). The authors then present all the basic ideas and applications of divisibility, primes, and modular arithmetic. They also introduce the abstract notion of a group and include numerous examples. The final topics on number theory consist of rational numbers, real numbers, and ideas about infinity. Moving on to geometry, the text covers polygons and polyhedra, including the construction of regular polygons and regular polyhedra. It studies tessellation by looking at patterns in the plane, especially those made by regular polygons or sets of regular polygons. The text also determines the symmetry groups of these figures and patterns, demonstrating how groups arise in both geometry and number theory. The book is suitable for pre-service or in-service training for elementary school teachers, general education mathematics or math for liberal arts undergraduate-level courses, and enrichment activities for high school students or math clubs.
Lectures on the Geometry of Numbers
Author: Carl Ludwig Siegel
Publisher: Springer Science & Business Media
ISBN: 366208287X
Category : Mathematics
Languages : en
Pages : 168
Book Description
Carl Ludwig Siegel gave a course of lectures on the Geometry of Numbers at New York University during the academic year 1945-46, when there were hardly any books on the subject other than Minkowski's original one. This volume stems from Siegel's requirements of accuracy in detail, both in the text and in the illustrations, but involving no changes in the structure and style of the lectures as originally delivered. This book is an enticing introduction to Minkowski's great work. It also reveals the workings of a remarkable mind, such as Siegel's with its precision and power and aesthetic charm. It is of interest to the aspiring as well as the established mathematician, with its unique blend of arithmetic, algebra, geometry, and analysis, and its easy readability.
Publisher: Springer Science & Business Media
ISBN: 366208287X
Category : Mathematics
Languages : en
Pages : 168
Book Description
Carl Ludwig Siegel gave a course of lectures on the Geometry of Numbers at New York University during the academic year 1945-46, when there were hardly any books on the subject other than Minkowski's original one. This volume stems from Siegel's requirements of accuracy in detail, both in the text and in the illustrations, but involving no changes in the structure and style of the lectures as originally delivered. This book is an enticing introduction to Minkowski's great work. It also reveals the workings of a remarkable mind, such as Siegel's with its precision and power and aesthetic charm. It is of interest to the aspiring as well as the established mathematician, with its unique blend of arithmetic, algebra, geometry, and analysis, and its easy readability.
Introduction to Projective Geometry
Author: C. R. Wylie
Publisher: Courier Corporation
ISBN: 0486141705
Category : Mathematics
Languages : en
Pages : 578
Book Description
This lucid introductory text offers both an analytic and an axiomatic approach to plane projective geometry. The analytic treatment builds and expands upon students' familiarity with elementary plane analytic geometry and provides a well-motivated approach to projective geometry. Subsequent chapters explore Euclidean and non-Euclidean geometry as specializations of the projective plane, revealing the existence of an infinite number of geometries, each Euclidean in nature but characterized by a different set of distance- and angle-measurement formulas. Outstanding pedagogical features include worked-through examples, introductions and summaries for each topic, and numerous theorems, proofs, and exercises that reinforce each chapter's precepts. Two helpful indexes conclude the text, along with answers to all odd-numbered exercises. In addition to its value to undergraduate students of mathematics, computer science, and secondary mathematics education, this volume provides an excellent reference for computer science professionals.
Publisher: Courier Corporation
ISBN: 0486141705
Category : Mathematics
Languages : en
Pages : 578
Book Description
This lucid introductory text offers both an analytic and an axiomatic approach to plane projective geometry. The analytic treatment builds and expands upon students' familiarity with elementary plane analytic geometry and provides a well-motivated approach to projective geometry. Subsequent chapters explore Euclidean and non-Euclidean geometry as specializations of the projective plane, revealing the existence of an infinite number of geometries, each Euclidean in nature but characterized by a different set of distance- and angle-measurement formulas. Outstanding pedagogical features include worked-through examples, introductions and summaries for each topic, and numerous theorems, proofs, and exercises that reinforce each chapter's precepts. Two helpful indexes conclude the text, along with answers to all odd-numbered exercises. In addition to its value to undergraduate students of mathematics, computer science, and secondary mathematics education, this volume provides an excellent reference for computer science professionals.
Geometry of Numbers
Author: C. G. Lekkerkerker
Publisher: Elsevier
ISBN: 1483259277
Category : Mathematics
Languages : en
Pages : 521
Book Description
Bibliotheca Mathematica: A Series of Monographs on Pure and Applied Mathematics, Volume VIII: Geometry of Numbers focuses on bodies and lattices in the n-dimensional euclidean space. The text first discusses convex bodies and lattice points and the covering constant and inhomogeneous determinant of a set. Topics include the inhomogeneous determinant of a set, covering constant of a set, theorem of Minkowski-Hlawka, packing of convex bodies, successive minima and determinant of a set, successive minima of a convex body, extremal bodies, and polar reciprocal convex bodies. The publication ponders on star bodies, as well as points of critical lattices on the boundary, reducible, and irreducible star bodies and reduction of automorphic star bodies. The manuscript reviews homogeneous and inhomogeneous s forms and some methods. Discussions focus on asymmetric inequalities, inhomogeneous forms in more variables, indefinite binary quadratic forms, diophantine approximation, sums of powers of linear forms, spheres and quadratic forms, and a method of Blichfeldt and Mordell. The text is a dependable reference for researchers and mathematicians interested in bodies and lattices in the n-dimensional euclidean space.
Publisher: Elsevier
ISBN: 1483259277
Category : Mathematics
Languages : en
Pages : 521
Book Description
Bibliotheca Mathematica: A Series of Monographs on Pure and Applied Mathematics, Volume VIII: Geometry of Numbers focuses on bodies and lattices in the n-dimensional euclidean space. The text first discusses convex bodies and lattice points and the covering constant and inhomogeneous determinant of a set. Topics include the inhomogeneous determinant of a set, covering constant of a set, theorem of Minkowski-Hlawka, packing of convex bodies, successive minima and determinant of a set, successive minima of a convex body, extremal bodies, and polar reciprocal convex bodies. The publication ponders on star bodies, as well as points of critical lattices on the boundary, reducible, and irreducible star bodies and reduction of automorphic star bodies. The manuscript reviews homogeneous and inhomogeneous s forms and some methods. Discussions focus on asymmetric inequalities, inhomogeneous forms in more variables, indefinite binary quadratic forms, diophantine approximation, sums of powers of linear forms, spheres and quadratic forms, and a method of Blichfeldt and Mordell. The text is a dependable reference for researchers and mathematicians interested in bodies and lattices in the n-dimensional euclidean space.
Lectures on Celestial Mechanics
Author: Carl L. Siegel
Publisher: Springer Science & Business Media
ISBN: 9783540586562
Category : Mathematics
Languages : en
Pages : 312
Book Description
The present book represents to a large extent the translation of the German "Vorlesungen über Himmelsmechanik" by C. L. Siegel. The demand for a new edition and for an English translation gave rise to the present volume which, however, goes beyond a mere translation. To take account of recent work in this field a number of sections have been added, especially in the third chapter which deals with the stability theory. Still, it has not been attempted to give a complete presentation of the subject, and the basic prganization of Siegel's original book has not been altered. The emphasis lies in the development of results and analytic methods which are based on the ideas of H. Poincare, G. D. Birkhoff, A. Liapunov and, as far as Chapter I is concerned, on the work of K. F. Sundman and C. L. Siegel. In recent years the measure-theoretical aspects of mechanics have been revitalized and have led to new results which will not be discussed here. In this connection we refer, in particular, to the interesting book by V. I. Arnold and A. Avez on "Problemes Ergodiques de la Mecanique Classique", which stresses the interaction of ergodic theory and mechanics. We list the points in which the present book differs from the German text. In the first chapter two sections on the tri pie collision in the three body problem have been added by C. L. Siegel.
Publisher: Springer Science & Business Media
ISBN: 9783540586562
Category : Mathematics
Languages : en
Pages : 312
Book Description
The present book represents to a large extent the translation of the German "Vorlesungen über Himmelsmechanik" by C. L. Siegel. The demand for a new edition and for an English translation gave rise to the present volume which, however, goes beyond a mere translation. To take account of recent work in this field a number of sections have been added, especially in the third chapter which deals with the stability theory. Still, it has not been attempted to give a complete presentation of the subject, and the basic prganization of Siegel's original book has not been altered. The emphasis lies in the development of results and analytic methods which are based on the ideas of H. Poincare, G. D. Birkhoff, A. Liapunov and, as far as Chapter I is concerned, on the work of K. F. Sundman and C. L. Siegel. In recent years the measure-theoretical aspects of mechanics have been revitalized and have led to new results which will not be discussed here. In this connection we refer, in particular, to the interesting book by V. I. Arnold and A. Avez on "Problemes Ergodiques de la Mecanique Classique", which stresses the interaction of ergodic theory and mechanics. We list the points in which the present book differs from the German text. In the first chapter two sections on the tri pie collision in the three body problem have been added by C. L. Siegel.
Complex Numbers and Geometry
Author: Liang-shin Hahn
Publisher: American Mathematical Soc.
ISBN: 1470451824
Category : Education
Languages : en
Pages : 204
Book Description
The purpose of this book is to demonstrate that complex numbers and geometry can be blended together beautifully. This results in easy proofs and natural generalizations of many theorems in plane geometry, such as the Napoleon theorem, the Ptolemy-Euler theorem, the Simson theorem, and the Morley theorem. The book is self-contained—no background in complex numbers is assumed—and can be covered at a leisurely pace in a one-semester course. Many of the chapters can be read independently. Over 100 exercises are included. The book would be suitable as a text for a geometry course, or for a problem solving seminar, or as enrichment for the student who wants to know more.
Publisher: American Mathematical Soc.
ISBN: 1470451824
Category : Education
Languages : en
Pages : 204
Book Description
The purpose of this book is to demonstrate that complex numbers and geometry can be blended together beautifully. This results in easy proofs and natural generalizations of many theorems in plane geometry, such as the Napoleon theorem, the Ptolemy-Euler theorem, the Simson theorem, and the Morley theorem. The book is self-contained—no background in complex numbers is assumed—and can be covered at a leisurely pace in a one-semester course. Many of the chapters can be read independently. Over 100 exercises are included. The book would be suitable as a text for a geometry course, or for a problem solving seminar, or as enrichment for the student who wants to know more.